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Abstract 

A method is presented for determining the nonlinear stability of undamped flexible structures 
spinning about a principal axis of inertia. Equations of motion are developed for structures 
that are free of applied forces and moments. The development makes use of a floating reference 
frame which follows the overall rigid body motion. Within this frame, elastic deformations are 
assumed to be given functions of n generalized coordinates. A transformation of variables is 

devised which shows the equivzdence of the equations of motion to a Hamiltonian system with 
71 + 1 degrees of freedom. Using this equivalence, stability criteria are developed based upon 
the normal form of the Hamiltonian. It is shown that a motion which is spin stable in the 
linear approximation may be unstable when nonlinear terms are included. A stability analysis 
of a simple flexible structure is provided to demonstrate the application of the stability criteria. 
Results from numerical integration of the equations of motion are shown to be consistent with 
the predictions of the stability analysis. 

A new method for modeling the dynamics of rotating flexible structures is developed and 
investigated. The method is similar to conventional assumed displacement (modal) approaches 
with the addition that quadratic terms are retained in the kinematics of deformation. Retention 
of these terms is shown to account for the geometric stiffening effects which occur in rotating 
structures. Computational techniques are developed for the practical implementation of the 
method. The techniques make use of finite element analysis results, and thus are applicable to 
a wide variety of structures. Motion studies of specific problems are provided to demonstrate 
the validity of the method. Excellent agreement is found both with simulations presented in the 
literature for different approaches and with results from a commercial finite element analysis 
code. The computational advantages of the method are demonstrated. 
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1. Introduction

The analysis of rotating flexible structures is an active area of research having appli-

cations iu a variety of engineering disciplines. A thorough aucl accurate dynamic. aua]ysis

is often critical to the success of structural designs that involve rotatiug members. Exam-

ples of fields requiring such analysis include robotics, rotating machinery, flexible space

structures, helicopter blades, and wind turbines.

The design of a vertical axis wind turbine is one example which highlights the impor-

tance. of dynamic analysis in the design of rotating structures. During its operation, the

turbine is subjected to wind loads with frequency content primarily at integer multiples

of the rotation rate. Successful design of the wind turbine depends heavily on the ability

to accurately predict the natural frequencies of the structure so to avoid any resonances.

Failure to do so can result in designs having unacceptably short lifetimes.

Aualysis of the motion of rotating flexible structures presents many challenges. Much
care must be takeu in forming the equations of motion to correctly account for the

coupling between the flexible and overall rigid body motions. In contrast to the motion of

fixed structures, small strains can be accompanied by large displacements and rotations.

The equations of motion are inherently nonlinear, even wlIen the effects of flexibility are

absent.

1.1 Focus of Report

The focus of this report is on the stability analysis and modeling of rotating flexible

structures. Two fundamental areas are entailed in the study. The first one deals with

determining the stability of motion based upon the equations of motiol]. Of particular

interest is the stability of unrestrained bodies rotating about an axis of principal moment
of inertia. The second area involves the development of mathematical models for rotating
structures. It is upon t}]ese. models and basic physical laws that the equations of motion

are based.

1.1.1 Stability Analysis

A great deal of information is available in the technical literature on the stability
analysis of rotating flexible structures. A classical result for rigid bodies states that a

motion of simple spin is stable about either the axis of minimum or maximum moment of
inertia in the absence of external moments. Stability criteria obtained to date for flexible
structures require spin to occur about the axis of maximum moment of inertia. Such
criteria generally hold either in the presence or absence of interl]al energy dissipation. The
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principal contribution of the present work is the development of a method to assess the
stability of spin about the axis of minimum nloment of inertia for undamped structures.

1.1.2 Modeling

The modeling of rotating flexible structures is another area which is represeutecl

well in the literature. Recent approaches for modeling often involve use of the. finite

element method in one form or another. Commercially available finite element analysis

codes are capable of simulating the motion of rotating structures, but the computational

requirements can be excessive even for simple problems. In addition, simulation provides

only a part of the picture as far as stability is concerned. The contribution of the

present work iu this area is towards the practical application and verification of a rec.eut]y

proposed modeliug technique based on finite elements. This modeling technique cau be
used along with the method developed for stability analysis to assess the attitude stability

of a rotating flexible structure.

1.2 Literature Review

A review is made of the relevant literature iu this section. The first part is concerned

primarily with the topic of stability analysis, but involvks certain aspects of modeling as
well. In many instances, a combined discussion of stability and modeliug is justified by
the strong link between the two. The second part of the review deals exclusively with

modeling techniques. In the light of the scope of the present work, attention is restricted

to single-body, flexible structures. Papers dealing with multi-body configurations aud

dlla]-spin satellites are not discussed.

1.2.1 Stability Analysis

Much of the interest in the unrestrained motion of rotating flexible structures has
its origins with America’s first satellite, Explorer I. The configllration of Explorer I con-

sisted of a long cylindrical core body with radially attached flexible antennas [I]. The
satellite was iuitially put into a spinning motion about its longitudinal axis of symmetry

(minimum moment of inertia). After only one complete orbit, radio signals indicated
that the satellite was in a tumbling motion.

The explanation for the unexpected motion of Explorer I is attributed to Brat.ewell

and Garriott [2]. For fixed angular momentlml, one can show that the kinetic energy of
a rigid body is maximized for spin about tbe axis of minimum moment of inertia. In

contrast, spill about the axis of maximum moment of inertia corresponds to the miuimum
energy state. It was concluded that the nomina] spinning motion of Explorer I about its
axis of minimum moment of inertia could not be maintained because of hysteretic energy
losses caused by motion of the flexible autennas.
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Thomson and Reiter [3] quantitatively examined the effects of energy dissipation on

the attitude of a spinning body. Expressions were obtained for the time rate of change
of a body’s precession cone angle in terms of a hysteretic damping factor and other

parameters for two simple models. Flexible deformations were expressed in one of the
models using a modal expansion technique, a practice used subsequently by many other

authors.

A solid mathematical basis for the stability analysis of rotating bodies was provided

by the work of Pring]e [4]. [Jsing the direct method of Liapunov, basic theorems were

established on the stability of damped mechanical systems with connected moving parts.

Among these was the so-called maximum axis rule which states that for a completely

damped systen]l a motion of simple spin can only be stable about the axis of nlaxi-

mum moment of inertia. The stability of an unconstrained, nongyroscopic system with

damping was shown to depend on the positive definiteness of a potential function.

A linear stability analysis of a spin-stabilized satellite with flexible antennas along

its axis of rotation was performed by Meirovitch and Nelson [5]. 130th spring-mass and
continuous beam models of the antennas were used in the analysis and yielded similar

results. In addition to the requirement of spin about the axis of maximum moment of

inertia, other relations involving the spin velocity and dynamic properties of the antennas

were needed to establish stability. A similar analysis of a slightly more. genera] mode]
with antennas transverse to the axis of rotation was given by Dokuchaev [6].

Nonlinear stability analyses of torque-free motions invariably made use. of the con-
servation of angular momentum. Conserved n]omentum quantities along with the total

system energy allowed authors to construct Liapunov functions for stability considera-
tions. A common result of such analyses was the. maximum axis rule. other conditions

specific to the given problem were also required to establish sufficient conditions for

stability.

Hughes and Fung [7] studied the stability of a satellite consisting of a central rigid

body with flexible, radial beams. Implicit in their analysis was the. assumption t,hat the
central body mass center remains fixed in an inertial fralneo ( kntrifugal stiffening was

accounted for by including second-order terms associated with the foreshortening effect
in the radial beams [8]. Deformations of the radial beams were described in terms of

a modal expansion. Remarkably, the authors obtained sufficient conditions for stability
which did not depend on truncation of the modal expansion.

Nelsoll and Meirovitch [9, 10] applied Liapunov’s direct method to the analysis
of gravity-gradient stabilized satellites for both discrete mass and continuous system

models. In the second of these two works, holmding properties of Rayleigh’s quotient
were exploited to establish stability criteria. Interestingly, the method did not require

*A completely damped syskrn rtissipates energy for all lnotions except,“rigid body” spin about a principal
axis.
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the solution of the complete eigenproblem associated with el”h.sticmotions, but only the

first eigenvalue. The work in [9] was extended by Meirovitch [11] to incorporate angular

momentum integrals and was applied to the torque-free spinning motion of a satellite
modeled as a rigid body with two flexible attachments.

Meirovitch [12] later introduced the notion of integral coordinates to accommodate
situations where density functions could not be readily defined. The method of integral

coordinates was applied to the problem of a torque-free satellite modeled as a rigid central

body with up to three pairs of flexible rods. The stability criteria compared favorably

with ones from another analysis based on a modal approach with series truncation. A

comparative study of stability analysis methods based upon density functions, integral

coordinates, and modal analysis was given in [13].

Teixeira-Filho and Kane [14] developed a method to construct stability criteria for

spinning, torque-free, elastic, dissipative systems. Unique to their analysis was the use
of a floating reference frame always aligned with the principal axes of the body. As

a consequence, stability criteria decoupled directly into external (maximum axis rule)

and internal stability conditions. The method was applied to a rigid satellite carrying

four elastically mounted antennas in [15]. Levinson and Kane [16] later used this method

along with a finite element approach to analyze the attitude stability of a spinning satellite

equipped with four elastic booms.

Numerous other works on stability similar to the ones just described were provided
by a host of authors [17, 18, 19, 20, 21, 22, 23, 24]. In most instances, stability criteria
were based upon the direct method of Liapunov and involved the maximum axis rule.

More recently, Helm et al. [25] applied the so-called Energy-Casinlir Method to

study the stability of spinning motions of a torque-free rigid body and a Lagrange top.

The method involves inferring stability from the sign-definiteness of a function composed
of the total system energy and a Casimir(s). The stability conditions obtained were

consistent with classical results. For discrete problems having a finite number of degrees
of freedom, this method does not appear to offer any advantages over earlier approaches

based on Liapunov’s direct method.

Krishnaprasad and Marsden [26] applied the Energy -Casinlir Method in an infinite-

dimensional setting to the stability analysis of an undamped, unrestrained rigid body
wit h an at t ached shear beam. In this case, the (;asimir was simply a function of the
angular momentum magnitude, a conserved quantity. Sufficient conditions for stability

involved inequalities similar to the maximum axis rule as well as an upper bound on the

spin velocity. A related analysis for a disk-beam system rotating about a fixed axis was
given by Baillieul and Levi [27].

Simo et al. [28] developed a nonlinear stability analysis technique called the Energy-
Momentum Method and applied it to coupled rigid body and elastic rods. The method

is a generalization of the classical energy method of Lagrange and makes use of both the
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energy and other conserved quantities such as the components of angular momentum. In

this particular sense, the method is quite similar to others described earlier. The major
difference with the method is its applicability to infinite-dimensional systems. Use of a

block diagonalization technique leads to a division of rigid body and internal vibration

stability criteria aualogous to that found in [14]. A simpler application of the Energy-

Momentum Method to the planar motions of a rotating beam was given by Bloch [29].

Liu [30] ?nade a stability analysis of a rotating system consisting of two rigid bodies

connected together by a frictionless spherical joint. Both bodies were assumed to be

axisymmetric and the spherical joint connecting the two was located at the intersection

of their axes of symmetry. Two cyclic integrals were shown to exist in addition to
the integrals of angular momentum and energy. Using the four constants of motion, a

Liapunov function was constructed which inferred stability for spin about either the axis

of maximum or minimum moment of inertia of the cotnbined bodies. As an aside, it is
noted that the system examined was not flexible in the sense that relative motion of the
two rigid bodies causes changes in strain energy. That is, the spherical joint provided no

restoring torque.

1.2.2 Modeling

Since the period of the late 1960’s, a large number of publications appeared on the

modeling and analysis of rotating space structures. A key element common to many of the

analyses was the use of a floating reference frame which follows the overall “rigid body”

motion (see, e.g., [31, 32, 33, 34, 35]). Expression of elastic deformations with respect to
such a frame often obviated the need for large displacement elasticity theory. It is noted,

however, that, although strains within a rotating structure may remain small, some form
of nonlinear analysis is required to capture the effects of geometric (centrifugal) stiffening

[8].

Laskin et al. [36] studied the unrestrained motion of a free-free beam subject to large
overall motions. A description of the beam kinematics was given in terms of the motion

of a floating reference frame along with a modal expansion for elastic deformations.

Kane’s equations [37] were used to derive the governing dynamical equations. Centrifugal
stiffening effects were accounted for by generalized active forces derived from the nonlinear
theory of elasticity.

In recent years, a renewed interest has emerged in the modeling of rotating flexible
structures. An often cited reference dealing with this subject is by Kane et al. [: M]. Here,
the authors developed a comprehensive theory for small vibrations of a general beam
attached to a base undergoing arbitrary, prescribed motion. Perhaps more important was

the attention they drew to certain deficiencies of existing multibody computer programs.

To illustrate these deficiencies, simulations for a spin-up maneuver of a cantilever
beam attached to a rotating base were carried out using both the new approach and the
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conventional approach upon which the multibody codes were based. Results from the

conventional approach indicated that the beam tip displacement grows without bound.
In contrast, results based on the new approach predicted the expected bounded motion

of the beam.

The. cause for the unrealistic predictions of the multibody codes was attributed ulti-

mately to the omission of centrifugal stiffening. Such an omission is somewhat surprising,

considering the wealth of knowledge on the subject at the time. Evidently, though, the

belief was commonly held in the aerospace industry that these multibody codes could be

used to correctly simulate the motion of systems containing flexible bodies [39].

Lee and Christensen [40] developed a finite element method applicable to the motion

of unrestrained flexible structures undergoing large elastic deformations. Equations of
motion were derived from momentum principles and the principle of virtual work. A

three-noded, eighteen degree of freedom beam element was developed and applied to
motion studies of a simple spacecraft.

Simo and VU-QUOC[41] used finite strain rod theories in a treatment of the planar
motion of beams undergoing large overall motions. A distinguishing feature of their
approach was the use of an inertial frame as opposed to a floating frame for the description

of beam motion. As a consequence, the inertia operator was linear and uncoupled,
while the stiffness operator was nonlinear. The method was applied to several example

problems in [42] and later extended to the three dimensional case in [43].

Simo and VU-QUOCstressed the advantages of their approach over ones which enl-

ploy a floating reference frame. Key to one of their arguments was the assertion that
introduction of a floating frame leads to a system of differential equations involving a

nonlinear algebraic constraint. Examples are presented in Chapter 4 which show that
this assertion is certainly not true for all such formulations.

The analysis of plate-like structures has also received due consideration in the liter-
ature. As with beams, care must be taken to account for geometric nonlinearities such

as centrifugal stiffening. Examples of formulations specific to rotating plates include the

work in [44, 45, 46, 47].

Application of a commercial finite element analysis code to the dynamic analysis of

rotating beams was reported by Peterson [48]. Simulations were carried out for three
different problems which were modeled using ten geometrically nonlinear beam elements.

Results of the simulations indicated that the finite element analysis code accounted for
various geometric nonlinear ities.

In theory, one should be able to use any one of several existing finite element analysis

codes to simulate the motion of rotating flexible structures. Although this may be true in
some instances, the computational requirements often become excessive even for relatively

simple problems. A specific example which illustrates this observation is provided in
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Chapter 4.

Zeiler and Buttrill [49] presented a method of analysis providing a compromise be-

tween fully nonlinear theories and others that assume rotation about a fixed axis. The
method involved a floating reference frame and the calculation of geometric stiffness nla-

tric.es for six sets of centrifugal loads. The effects of centrifugal stiffening were accounted

for approximately by including the geometric stiffness matrices in the analysis. Compu-

tational requirements of the method were reduced by expressing elastic deformations as

a modal expansion of a structure’s free-free modes.

A method quite similar to that in [49] was given by Banerjee and Dickens [50].
Simulations of spinning motions for a cantilevered beam and a cantilevered plate were

performed. Results of the simulations were shown to be in good agreement with the
predictions of special-purpose theories developed earlier.

The methods presented in the two previously cited works made a significant contri-

bution to the state of the art for motion simulation of rotating flexible structures. Both

of the methods have the advantage of being applicable to general structures. Another im-

portant advantage is that of computational efficiency. By employing a floating reference

frame and modal expansions for elastic deformations, the computational requirements

for motion simulations are reduced significantly.

A recently proposed method possessing all of the advantages just mentioned was

given by Segalman and Dohrmann [51]. Their approach makes use of a floating reference
frame and a reduced set of degrees of freedom, but does not explicity involve the calcu-
lation of geometric stiffness matrices. Furthermore, all of the terms necessary to form
the equations. of motion can be obtained from any finite element analysis code capable

of nonlinear static and linear dynamic analysis. The development and implementation

of this method is the subject of Chapter 4.

1.3 Summary of Contents

Equations of motion are derived in Chapter 2 for undamped rotating flexible struc-

tures that are free of applied forces and moments. The formulation is based upon the

use of a floating reference frame which follows the overall rigid body motion. An as-

sumed displacement approac}l is adopted whereby elastic deformations of the structure

are expressed as functions of n generalized degrees of freedom. An important result is

the development of a nonlinear transformation of variables which puts the equations of
motion into a canonical form. In particular, it is shown that the equations of motion are

equivalent to a Hamiltonian system with n + 1 degrees of freedom. This result serves as
the basis for the development of Chapter 3.

A method is presented in Chapter 3 for determining the nonlinear stability of flexible

structures spinning about a principal axis of inertia. The method has its foundation on
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the equivalence of the equations of motion to a Hamiltonian system. Transformation of

the equivalent system Hamiltonian to its so-called normal form permits application of

the work of previous authors to the question of stability. A closed-form stability analysis

of an example problem is provided to illustrate the method. Results of the analysis are

confirmed by numerical integration of the equations of motion.

The development and implementation of a recently proposed method for modeling
rotating flexible structures is the subject of Chapter 4. The method utilizes a floating

reference frame in accordance with the development of Chapter 2. Within this reference
frame, deformations are expressed in terms of a quadratically-coupled set of deformation

modes. The method is applicable to general structures and its implementation is facili-

tated through the. use of a nonlinear finite element analysis code. The application of the

new method of modeling is illustrated by several examples. Comparison of results are

made for problems found in the literature for the purpose of verification. The compu-

tational advantages of the method over a commercially available finite element analysis

code are demonstrated for a specific example.

The principal results and conclusions of the report are presented in Chapter 5. Also

included is a discussion of the significant contributions of the present work to the areas

of the stability analysis and modeling of rotating flexible. structures.
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2. Equations of Motion

The subject of this chapter is the development of governing equations of motion
for rotating flexible structures. Key to the development is the use of a reference frame
which follows the overall rigid body motion of the structure. Within this frame, elastic.

deformations are assumed to be functions of n generalized degrees of freedom. It is shown

using a nonlinear transformation of variables that the governing equations are equivalent
to a Hamiltonian system of equations with n + 1 degrees of freedom. This result serves

as the basis for the method of stability analysis presented in Chapter 3.

Equations of motion are derived in the first section from fundamental principles of

dynamics. Equivalent sets of equations better suited for numerical integration and stabil-
ity analysis are also formulated. The second section is concerned with the development of

a transformation of variables which puts the equations of motion into a canonical form.

The chapter concludes with a simple application of this transformation.

2.1 Derivation of Equations

2.1.1 Introduction

A system of interconnected particles each of mass 7ni (i = 1,. ... fVP) is depicted in
Figure 2.1. Also shown in the figure are a floating reference frame, B, and an inertia]
frame, fV. Orthogonal, dextral sets of unit vectors bl, b2, b~ and n,, n2, ns are fixed in

fl and N, respectively.

The origin, 0, of 1? is chosen to coincide with either the mass center or a fixed point
of the system. The orientation of B in fV depends upon the particular choice for the

floating frame. Regardless of this choice, the intention is for B to follow the nominal

rigid body motion of the system. The central principal axes of the system are assumed

to be parallel to bl, b2, b3 for motions of simple spin about a principal axis.

The angular velocity vector of B in IV is expressed in terms of the unit vectors fixed

in 1? as

(’2.1)u = u]bl + wzbz + w]bs

The position vector from 0 to the i’th particle when the system is undeformed is

denoted by ri (see Fig. 2.1). Similarly, the displacement vector of the i’th particle. from
its undeformed position is denoted by Ui. Expressions for ri and u’ are given by

ri = r;bl + r;b2 + r$b3 (22)
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Figure 2.1. Sketch of the system of particles and reference frames.
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and

Ui=u; bl +u;bz+~jbs (2.3)

The scalars rj,r~,r$ in Eq. (2.2) are all constant, whereas u~,u~,u~ in Eq. (2.3) are

functionsof dimensionles sgeneralized degrees of freedot nql, . . ..q.,.

Two notational conventions from [37] are adopted here. The first is the practice of
denoting the time derivative of the vector p in the reference frame A by ~p. The second

is the placement of numbers along with the equality sign in an equation. For example,

the appearance of (1,2) in the equation y ‘]=Z)mx + b indicates that the result is obtained

with reference to Eqs. (1) and (2).

Einstein’s summation convention is employed as a notational convenience. With

this convention, the repeated appearance of an index implies summation over all possible

values of the index. For example, Eq. (2.3) is written more cotnpactly as Ui = ujbk.

2.1.2 Derivation

The basic approach of this section is to apply fundamental principles of classical

mechanics to derive the governing equations of motion. Equations associated with the

motion of the floating reference frame are obtained from conservation of linear momentum

and the angular momentum principle. The remaining equations of motion are given by
Lagrange’s equations.

It is assuinecl that there are no energy losses in the system caused by internal danlp-

ing. The assumption is also made that the system is free of any external forces and

moments, unless 0 is a fixed point. In this case, reaction forces acting at 0 are pernlit-

ted.

The velocity of O can always be set equal to zero regardless of whether or not O is

a fixed point. If 0 is not fixed, then it is the center of mass of a system free of external

forces. Conservation of linear momentum implies that the velocity of 0 is constant. No
loss of generality results by setting the constant velocity equal to zero.

Let v’ denote the velocity of the i’th particle in IV. Using a basic kinematical
relationship one obtains

B~

v’ = -j#r’+u’) +@ x (r’ +u*)

(2.4)

(2.5)
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where (“) denotes time differentiation and c~l~ is the permutation symbol defined as

{

1 for even permutations of (k, 1,m)

~kh)t = – 1 for odd permutations of (k,/, m) (2.6)
O otherwise

The angular momentum vector, H, of the system about 0 is defined as

NP

H = ~rni(ri + Ui) x vi
i=l

= hlbl + h2b2 + h~b~

Application of the angular momentum principle yields

Ed
~H+ux H=O

or, equivalently,

;hl = w3hz – w2h3

$hz = w1h3 – w3h1

;h3 = w2h1 – wlhz

It follows from Eqi. (2.10-2.12) that the magnitude of

defined as .

h = ~m,

is constant. Equation (2.13) is used later to reduce the

by one.

(2.7)

(2.8)

(2.9)

(21O)

(2.11)

(2.12)

the angular momentum vector,

(2.13)

number of equations of motion

It is useful to obtain expressions for the momenta variables hl, h2, h3 in terms of the

system kinetic energy, T, defined as

[Jpon differentiation of Eq. (2.14) with respect to U. one obtains

8T ‘p—=
8W, E ?nitk~,,,(?’:,,+ U;r,)Vj (s= 1,2, 3)

i=l

(2.14)

(’2.15)
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from which follows

8T aT aT
Np

—bl + —b2 + —b~ = E ktk.~,(r;,, + ‘;,,)V;bSawl au2 au3 ial I

= $nL’(r’ +d) x v’ ~

Comparison of Eqs. (2.7), (2.8) and (2.16) shows that

8T
hk=—

awk
(k=l,’2,3)

(2.16)

(2.17)

which, upon substitution into Eqs. (2.10-2.12), yields

(-)d 8T aT dT

G awl = ‘3tb2–‘~aw3 (2.18)

(-)

d dT aT aT———
Z 8UZ = “ aw3 ‘3 awl

(2.19)

(-)d dT aT aT—— —
% dw~ = ‘2 awl ‘~ awz

(2.20)

Equations (2. 18-2.20) are analogous to Euler’s equations for a rigid body and govern the

rotational tnotion of the floating frame. Notice that the introduction of generalized co-

ordinates associated with the orientation of f? in N is avoided. An alternative derivation
of Eqs. (2.18-2.20) based upon the use of quasi-coordinates with Lagrange’s equations is
also possible (see [52]).

The remaining equations of motion are given by the Lagrangian equations

(2.21)

where [J denotes the strain energy of the system.

Additional kinematic variables must be introduced if the orientation of B in N

is required. Several possibilities exist including Euler angles, direction cosines, Euler
parameters and Rodrigues parameters (see, e.g., [5:1]). It is noted that Eqs. (2. 18-2.21)

are in no way affected by the kinematic variables associated with the orientation of B in
N.

2.1.3 Alternative Equations I

An alternative form of the equations of motion better suited for numerical integration

is presented in this section. The basic approach is to obtain a set of 2n first order
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differential equations equivalent tothensecond order equations ill Eq. (2.21). This set

of equations along with Eqs. (2.10-2.12) are then put into a dimensionless form suitable

for explicit time integration.

To begin, Eq. (2. 14) is expressed in matrix notation as

T=;[U1Uzw3q1 . . . dM[w U2 W3 41 . . . q,,]T (’2.’22)

where the m~s matrix, M, is symmetric, positive definite, and a function of ql, . . . . q,,.

(Jpon differentiation of Eq. (2.22) with respect to q, w2, WBand ~1, . . . . q,, one obtains

[h, h, h~ p, . . . p,,]~ ‘z:’) M[q LO,W~ & . . . (j,L]T (’2.’23)

where the momenta variables pl, . . . . p,, are defined as

dTpi=—
d(ji

(i=l ,. ..,71)

Premultiplication of Eq. (2.23) by M-’ yields

[u, u~u3 ~,... (jn]T = M-’ [h, hz

or, equivalently,

wk =

d
. ~~j =

Substitution of Eqs.

3 71

E
7n;; hl + x 77L;,:+3PS

1=1 S=l

3 ?1

x Tn;;3,1 h + E 77q3,s+3Ps

1=1 S=l

h3p1 . . . P?,]T

(X24)

(2.’25)

(k=l,2,3) (2.26)

(j=l ). ..1 7t ) (2.27)

(2.22) and (2.24-2.25) into Eq. (2.21) yields

(i .18M ‘NJ
~pj = ;[h, h, h, p, . . . p,L]M ~M-’[hl h, h3 p, . . . p,,]T - ~

(j=l,..., n) (2.’28)

Equations (2.10-2.12) and (2.27-2.28) constitute a set of 2?1+ 3 first order ordinary
differential equations. The primary variables are hl, hz, h3, qi, . . . . q,, and P1, . . . . p,,. The

secondary variables U1, Uz, 03 appearing in Eqs. (2. 10-2. 12) are given in terms of the
primary variables by Eq. (2.26).

It is useful to put the governing equations into a dimensionless form. To this end, it

is assumed that. the spinning motion is nominally about an axis passing through 0 and
parallel to bl (see Fig. 2. 1). The nominal spin rate, Q, is defined as

fl = h/.J (2.29)
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where J denotes the (1,1) element of the mass matrix for ql ,’. ... q~ all equal to zero. In

physical terms, J is simply the moment of inertia about the first principal axis of the
undeformed system.

Defining,

‘r = W

Zj+] = qj (j=l,..., n)

!Jj+l = Pjlh (j=l,...,7L)

m~ = hk/h (L=1,2,3)

ii = A4/J

the governing equations assume the dimensionless form

d

K7’1*
‘d

W2
d

F713

d
~Yj+l

where

(2:0)

(2.Jq
—

(227)

(248)

(2.:10)

(X31)

(2.32)

(2.33)

(2.34)

(2.35)

(’2.36)

(2.37)

1 au_——
Jf12 ~qj

(j=l ),.. .,?1

3 11

(jk =

x
fil;l’ m/ +

x
W:+3YS+1 (k=l,2,3)

(2.38)

3 YL

E x
rn;;3,,7n/ + 7il;.3,~+3y~+1t! (j=l ),. ..,71

1=1 9=1

#-

~[m~ 77127n3 y~ . . . y,,+I]ii-’&fif-’[mI 7nj 7n3 y~ . . . y,,+~]=

‘3

(2.:19)

(2.40)
1=1 5=1

It is clear from Eqs. (2.35-2.40) that the equations of motion can be formed entirely
in terms of the mass matrix, &f, and the strain energy, (J. A method of modeling which

provides expressions for fhf and tJ in terms of ql ,. ... q,, is given in Chapter 4.

2.1.4 Alternative Equations II

The equations of motion presented in 2.1.3 involve a combination of both primary

and secondary variables. Although such a formulation is useful for numerical integration,

it offers little advantage for stability analysis.

In this section, the equations of motion are formulated entirely in terms of ql, . . . . q,,

and the momenta variables. The total number of equations is reduced by one through
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the use of a constant of motion. The set of equations obtained has a structure quite
similar to a Hamiltonian system and serves as the starting point for the development in

the following section.

Let ~ denote the kinetic energy of the system expressed entirely in terms of ql,. ... q,,

and the momenta variables. Substitution of Eq. (2.25) into Eq. (2.22) leads to

i=; [h1h2h3p1...p,,]kf-’[h h~ h3 p] . . . p~]~ (2.41)

which, upon differentiation with respect to pj and qj, yields

8?
3 11

—=

8pj
E

7rt;&[hl + E ~~;:3,s+3Ps
1=1 .9=1

(247) d
— ~93 (j=l ,. ..,72) (2.42)

and

aT ~&f-1
—=
~qj

;[hlhz h3 pl . . . p.]~[hl hz h3 PI . . . p,,]=
%

;[hl hz h3 p, . . . p,,]kf-’
[

~~~-1

= — - & (MM-l)] [h, h, h3 pl . . . p,t]~
dqj

–;[hl h2 h3 pl . . .
aki _,—— p,Jf14-’—
~qj

M [Itl hl h3 pl . . . p,t]~

(248) d NJ
——d~P~ – ~ (j=l ,.. ., ?-L)

Equations (2.42-2.43) are expressed more compactly as

d 8E
~9~ = ~ (j=l ,. ..,72)

d 8E_—-.-pj =
aqj

(j=l ,.. .,n)

where
E=T+U

(2.43)

(2.44)

(2.45)

(2.46)

It is useful now to solve Eq. (2.13) for hl giving

h,=-
(2.47)

Substitution of Eqs. (2.47) and (2.41) into Eq. (2.46), and subsequent differentiation with
respect to hz yields

8E—=
8hz

;[-h, hlOO . . . O]M-l [h, hz h3 p, . . . p,,]T
1
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(226)
(w2h, - wlh,)/hl

(2.48)

or, equivalently,

jh3 ‘2S7)
-Z

(2.49)

Defining the dimensionless system energy, G’, as

G’= E/(hQ) (2.51)

it is deduced that

~ (2.41 ,2~6,2.51)

[

~ ;[hl h, h, p, . . . p,L]M-l[hl h2 h3 p, . . . p,L]T+ (JI
(233)

—

[
~ ~[ml 7712 m3 Y2 . . . U,,+,]M-’ [m, n~z ,ns y~ ..- y,,+,

1
]T + ~(J

(2.’29,2.34)
= ~[7n1 m2 m3 y2 . . . -y,,+l]M-’ [ml ??LZ7T13 YZ . . . ?J,L+l]T + (]/(~~2)

(2.47,2.33)
= ;[JCTZ w m y, ~~. Y,,+,]fi-’

Expression of Eqs. (2.44-2.45) and (2.49-2.50) in terms of the dimensionless quanti-
ties defined in Eqs. (2.:10-2.:1:1) and (2.51) yields

d

2713= d==% (2.53)

d

Z7Y12= -J==i& (2.54)

d w’
~xj = Y& (j=2,..., n+l)

d 8G_—~yj =
8Xj

(j=2,..., n+l)

(’2.55)

(2.56)
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Notice that Eqs. (2.53-2.56) would form a Hamiltonian system were it not for the presence

of ~1 – rn~ – rn~ in Eqs. (2.53-2.54). Transformation of these equations to an equivalent
Hamiltonian system is the topic of the following section.

2.2 Transformation to Canonical Form

A transformation of variables involving 7n2 and n~3 is developed which permits the
expression of Eqs. (2.53-2.56) as a Hamiltonian system of equations. Closed-form expres-

sions are obtained for the transformation and its inverse.

New variables Z1 and yl are introduced as functions of 7n2 and 7713. Letting H denote
the function G expressed in terms of xl, . . . . X,l+l and VI, . . . . y,,+l, one has

H(q,. . . ,z7L+l,yl, . . . ,y,,+l) = ~(m2,7n3, ~2, . . . ,~,,+1, y2,. . . ,Y,,+I)

Application of the chain rule for differentiation to Eq. (2.57) yields

from which follows

d h, d h, d

P = ——7nj + ——
87712 dr a7n3 d’r 7’13

= -[~g-~~]

(2.53-2.54)

(2.58=2.59)

-[g*-**] #

Similarly,

d

Zy’ = -F-[**--’] ~hz Chm3 (3XI

d (z.s~.~,) dH

Zxj – dyj
(j=~ ‘,.. .,71+1)

d (2.56,2.60) 8H_—
Zyj = ~xj (j=2,...,7l+l)

(2.57)

(2.58)

(2.59)

(2.60)

(2.61)

(2.62)

(2.63)

(2.64)

(2.65)
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Equations (2.62-2.65) are equivalent to the Hamiltonian system

(j=l ,O. .,n+l)

(j=l ,.. .,n+l)

(2.66)

(2.67)

The goal is to obtain a solution to the partial differential equation given by Eq. (2.68).

To this end, consider the transformation of variables

xl = 7n3c(m~ + m~ ) (’2.69)

Y1 = m2c(m~ + m:) (2.70)

and its inverse

mj = yld(x; + y;) (’2.71)

ms = Xld(xf + y:) (2.72)

where c and d are functions of the specified arguments. Substitution of Eqs. (2.69-2.70)

into Eq. (2.68) yields

2SC(S)C’(S) + [C(S)]2= & (2.73)

where
s = m: + m~ (2.74)

A simple solution to the nonlinear ordinary differential equation in Eq. (2.73) is not
apparent. The first approach taken to obtain a solution was to express c as a power series
in the variable s. Coefficients of the series were them determined by equating like powers
of .s in Eq. (2.7:3). A similar series expansion was also developed for the function d.

An interesting observation was made concerning the function d during the course of
an analysis presented later in this chapter. Letting d,,, denote the series expansion of d

truncated after the m’th term, it was observed that

[d?+;+Y;)]’= 1- ‘~; y;

This observation) motivated the proposition that

—

+ o [(x;+ y;)’”] (2.75)



The objective is to verify the validity of Eq. (2.76). “In so doing, a closed-form

solution for the function c is also obtained. Squaring Eqs. (2.69-2.72) and adding the

results leads to

Substitution of Eq. (2.78) into Eq. (2.77) yields

1 = c (r[d(r’)]z) d(r)

(2J6)
C(r’(1 – ?’/4)) /~ (2.79)

where
~=x;+g; (2.80)

Equation (2.79) can also be written as

c(w) Ji=7p = 1 (2.81)

where

w=r(l–r’/4) (2.82)

Solving Eq. (2.82) for r and substituting the result into Eq. (2.81) yields

(!2.8:1)

or, equivalently,

c(m~ + m;) =

m

(2.84)

It can be verified that Eq. (2.83) is the solution to Eq. (2.73) for the initial condition
c(0) = 1. Thus, in the linear approximation, xl = 7n3 ancl yl = 7r12.

Obtaining closed-fortn solutions for the functions c and d was a serendipitous result.
Only after development of the associated power series did the simple form of d, and later
c, become apparent. Plots of the functions c and d are provided in Figure 2.2. The

domains of physical significance for c and d are from O to 1 and O to 2, respectively.

The procedure for transforming the original equations of motion to an equivalent
Hamiltonian system is summarized below.

1.

2.

Obtain expressions for the mass matrix, M, and strain energy, II, in terms of the

generalized degrees of freedom ql, . . . , q,, (see Eqs. (2.14) and (2.22)).

Obtain an expression for the dimensionless system energy, G, in terms of the vari-
ables mj, m:3, xz, . . . . X,,+l and yz, . . . , Y,,+, (SW Eqs. (2.34) and (2.52)).
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Figure 2.2. The functions c and d as given by Eqs. (2.84) and (2.76).

Obtain the Hamiltonian, fl, by substitution of Eqs. (2.71-2.72) and (2,76) into the
expression for G.

governing equations in the new variables ~j,~j (j = 1,.. .,n+ 1) are given by

(2.66-2.67).

The net result of the transformation is to permit the expression of the original
equations of motion as a Hamiltonian system with n + 1 degrees of freedom. Such a

result for a rigid body (n = O) has been attributed to Andoyer (see [54]). The present

tranformation differs fundamentally from Andoyer’s by never requiring the introduction

of Euler angles.

2.3 Example Application

A simple example is presented which illustrates the procedure developed in the previ-
ous section. Euler’s equations for the torque-free motion of a rigid body are transformed
to an equivalent Hamiltonian system. Periodic solutions of the Harniltonian system are
then analyzed. A similar analysis is made using all established method. Results of the
two analyses are then compared.
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2.3.1 Problem Statement

The problem under consideration deals with the torque-free motion of a rigid body.
For this problem, the floating reference frame and the rigid body move together and the

strain energy is identically zero. It is assumed that the central principal moments of
inertia satisfy the inequalities

11>12>13 (2.85)

The assumption for the ordering of II, IZ, 13 is made simply to facilitate comparison of

results from the two different analyses.

The rotational kinetic energy of the rigid body is expressed as

which, upon substitution into Eqs. (2. 18-2.’20), leads to the Euler equations

(2.86)

(2.$7)

(2.88)

(2.$9)

of present interest are the solutions to Eqs. (2.87-2.89) for the initial conditions

Llq(o) = J] (2.90)

L+(o) = L& (’2.91)

w~(o) = o (!2.92)

It turns out that the solutions to Eqs. (2.87-2.89) are periodic functions of time. The

period of the solutions generally depends on both the initial conditions and the values of

the inertia ratios lz/Jl and 13/11.

Two different approaches are used to determine the period of the solutions. In the
first, Euler’s equations are transformed to an equivalent Hamiltonian system. The period

is then determined from the normal form of the Hamiltonian. Exact solutions to Euler)s

equations are used to determine the period in a second approach.

2.3.2 Approach I

The three steps outlined near the end of 2.2 are applied to the present problem.

Step 1: The mass matrix is readily identified from Eq. (2.86) as

M = dz(-MJ(l,,12, 13) (2.9:1)
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Step 2:

(2.94)

(2.95)

Step 3:

Throughout this development, the initial value of a variable is designated by placing
a hat “A” above the variable. Using the initial conditions in Eqs. (2.90-2.92) one obtains

(2:3)
rnz 12&//( I@, )~ + (12LL2)2 (2.97)

(223) o
*3 (2.98)

which, upon substitution into Eqs. (2.69-2.70), yields

il = o (2.99)

(2.100)

In order ,to use computer-based normalization procedures, it is necessary to have
numerical values for the coefficients in the expansion of the Hamiltonian. As a specific

example, the case of 12/11 = 0.8 and 13/11 = 0.5 is considered. For these values of the

inertia ratios, Eq. (2.96) becomes

(2.101)

The normalized Hamiltonian, A, is expressed in terms of the. action-angle variables p and

where 2n~ is the degree to which the normalization is carried out.

Hamilton’s equations in the action-angle variables are given by

(2.103)

(2.104)
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It is apparent from Eqs. (2. 102-2.104) that p is constant and

()
11~

O = ~ la/pi-i T + 9

1=1

Setting O equal to 27r + ~ in Eq. (2.105) and solving for ~ yields

(2.105)

T = ,,, 2~

E lalpl-l
1=1

where T denotes the period in dimensionless units.
j, by

ltd
p = ~ b[;;l

1=1

(2.106)

The action is expressed in terms of

(2.107)

The coefficients al and bl (1 = 1,.. . ,5) appearing in Eqs. (2.106-2.107) and reported in

Table 2.1 were determined using a normalization procedure similar to the one described

in [55].

The procedure to determine the period given bl and & is summarized below.

(2.108)

2.3.3 Approach II

An alternative procedure to determine the period is presented below. The analysis

works directly with the solutions to Euler’s equations and is based upon a development

given in [53].

The solutions to Eqs. (2.87-2.89) for 01 and ti2 greater than zero are given by

where .sn, cn and dn are Jacobi elliptic functions, and

h2 = (11(3,)2+ (IJJ2)2

e = IIq + 12dJ
(2.112)

(2.113)
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p = ~z,–z~

‘m = (q - 2,)/(% - z,)

Cn[–pt(+n] = o

The .Jacobi elliptic functions are periodic and satisfy the. identities

srz~t + 4K(?n)[rn]

cn(pt + 4K(r-rl)[m]

where K(m) is the complete elliptic integral of

= s7qJ)tp’n]

= Cr+)i[m]

the first kind.

(2.114)

(2.11!5)

(2.116)

(2.117)

(’2.118)

(2.119)

(2.120)

(2.121)

Following a significant amount of algebraic manipulation, it can be deduced that

[

12– Is 1,/1~ – 1
771= fil:

11 (1 - 1,/1,)[1 - (13/1,)[1 +7~~:(z,/~2 - 1)111 (2.122)

and

[

(1,/], )(13/1,)
1

1/2
(2.123)T = 4]{(’”) (1 - }2/1, )[1 - (13/1, )[1 + 7;~;(~l/~’2 - 1)11

2.3.4 Comparison of Results

Plots of the period as a function of Thz are shown in Figure 2.3 for the inertia ratios

lz/ll = 0.8 and ]3/11 = 0.,5. Results are presented for both the exact analysis (Approach

II) and the approximate one (Approach 1) based upon normalization of the Hamiltouian.

Physically meaningful values for 7;12 range from negative one to one. Results are only

shown for positive values of tfl~ in the figure since the plot is symmetric. about the vertical
axis. Values of ~hl near to zero are associated with nominal spinning motions about the

first (maximum) principal axis. Motions about the second (intermediate) principal axis
correspond to values of Thz near unity.

It is interesting to observe that the period increases monotonically with ?hz. This

behavior is predicted by both the exact analysis aud the approximate oue for n~ >1. In

the limit as 7;1ZA 1, m ~ 1 and the period approaches infinity.

It is clear from Figure 2.3 that the approximate solutions
normalization is increased. Normalization of the Hamiltonian

improve as the degree of
through quadratic terms
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Table 2.1.

5.0 -

4.5 “

4.0 -

y3.5
m
Y
1- 3.()

2.5 -

2.0 [—

Coefficients a[andbl appearing ill Eqs. (2.106-2.107).

7
-i-
‘2

3

4

5—

(1[

5.00000 x 10-’

–:1.12500X 10-’

–7.031’25x 10-2

–1.09863x 10-1
–1.87042X 10-’

(q

2.50000X 10-’
–2.34375 x 10-~

–5.12695 X 10-3

–1.ol&52x 10-3
–2.01881 x 10-4

— Approach II (exact)

H

— — Approachl nd=l
—— Approachl nd=z

---- Approachl nd=s

—— —— —— .— ——— ——

1.5 ! I 1 L I

0.0 0.2 0.4 0.6 0.8 1.0
AZ

Figure 2.3. Tl]e period, ?’,asafunctio no fti~zfort =0.8 and ~= 0.5.

(?Ld= l)predicts ac.onstant period. This result inconsistent with alinear analysisof

Euler’s equations.

The favorable agreement, between the two analyses provides a positive check of the

transformations developed in 2.2. For this example, transformation of the equations of
motion to au equivalent Hamiltonian system is an Imnecessary complication. The utility
of the transformation is primarily ill tile context of stability analysis, as is shown in
(;hapter 3.
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2.4 Summary

Equations of motion are developed in this chapter for rotating flexible structures.

Central to the development is the use of a floating reference frame which follows the

overall rigid body motion of the structure. Elastic deformations within this frame are

assumed to be functions of n generalized degrees of freedom.

Fundamental principles of dynamics are used to derive the equations of motion.

Equations associated with the motion of the floating reference frame are obtained from
conservation of linear and angular momentum. The remaining equations associated with

elastic deformations are given by Lagrange’s equations. Equivalent sets of equations
Letter suited for numerical integration and stability analysis are also formulated.

A nonlinear transformation of variables is developed which permits the expression

of the equations of motion as a Hamiltonian system with n + 1 degrees of freedom. This

result is of fundamental importance to Chapter 3 because of its relevance to the stability

analysis of rotating structures. Application of the transformation is illustrated for a

problem involving the torque-free motion of a rigid body.
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3. Stability Analysis

The subject of this chapter is the stability analysis of unrestrained, flexible structures
rotating about a principal axis of inertia. This area of study has important applications

in the design of rotating space structures such as spin-stabilized satellites. A unique

feature of the present work is its focus on the stability of spin about the axis of minimum

moment of inertia. Previous work in the literature has dealt almost exclusively with the

analysis of spin about the axis of maximum moment of inertia.

The results developed herein are based upon the equivalence of the governing equa-

tions of motion to a Hamiltonian system. Recall from Chapter 2 that this equivalence was

established through the introduction of a transformation of variables. Thus, the wealth

of knowledge existing for Hamiitonian systems can be applied to the stability analysis of

rotating structures.

Following a brief presentation of background material, a discussion is provided on

stability and its meaning in the context of rotating structures. An introduction to the

theory of Hamiltonian systems is then given, followed by development of a method to

assess stability. The chapter concludes with a stability analysis of an example prob-
lem. Results of the stability analysis are confirmed by simulations based upon numerical

integration of the equations of motion.

3.1 Background

A classical result of dynamics states that the spinning motion of a rigid body is stable

about the axis of either maximum (major) or minimum (minor) moment of inertia when

external moments are absent. Spin about the axis of intermediate moment of inertia is

unstable. Generalization of this result to flexible bodies is only possible for the. case of

spin about the intermediate axis.

Stability criteria for spin about the major axis are often established using Liapunov’s
direct (second) method. Useful results can be obtained either in the presence or absence

of internal energy dissipation. In contrast, spin about the minor axis is usually unstable

for damped systems. This result can be shown for specific problems either from a liuear

analysis of the equations of motion or by application of Chetayev’s instability theorem.

The stability analysis of undamped, flexible structures spinning about the minor

axis has received very little attention in the literature. The limited amount of work in

this area is understandable since all structures are damped to some extent. The work
presented here was originally motivated by a need to predict the short-term behavior of
lightweight, flexible structures in an exoatmospheric. experiment.
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Use of Liapunov’s direct method for proving the stability of spin about the major
axis typically involves construction of a Liapunov function from the angular momentum

integrals (constants of motion) and the total energy. Such an approach can not be used
to show stability for spin about the minor axis, even for undamped structures. At least

one more integral of motion is required in order to construct a Liapunov function. It

turns out, however, that integrals in addition to those of energy and momentum are the

exception.

The nonlinear stability of rotating flexible structures has been studied in great detail
for cases of spin about the major axis. The contribution of the present work is towards

the development of a means to assess the nonlinear stability of undamped flexible struc-
tures spinning about the minor axis. Results are applicable to discrete model! of elastic

bodies that are. free of applied forces and moments. Dual spin satellites and xpulti-body

configurations are not considered.

3.2 Stability Concepts
I
[
I

The purpose of this section is to provide a brief review of stability and to! introduce

Liapunov’s direct method. The meaning of stability in the context of spi~ about a

principal axis is also discussed.

Consider an autonomous system of first order differential equations givenl by

+4) = zi(a(~), . . . . %(i)) 2=1, . . ..7?2 (3.1)

It is assumed that the null solution, defined as
I

I
?-q(i) = o O<t <cc), 2=1 ,.. .,m I (32)

I

satisfies (3.1). That is, Zi(O, . . . ,0) = O for i = 1, . . . ,rr~. A general solution t; Eq. (3.1)

is denoted by z(i) and its norm defined as

~ 1

4[lZ(’t)ll =~[Zi(t)]2
i=l

I (3.3)

Depending upoi] the particular application, there are several possible definitions
of stability. In the present context, attention is restricted to the concept of Liapunov
stability. The following definitions and theorem are taken from Meirovitch [56].

Definition 3.1. The null solution is

there mists a &= 6(c) >0 such that
stable in the sense

if the inequality

[Iz(o)ll <6

of Liapunov if for any positive c
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is satisjied, then the inequality

Definition 3.2 The null solution is said to be unstable if for any arbitrarily small 6 such

that

[[2(0)[[<6,

we have at some other jinite time t] the situation

Ilz(h)ll=% t, >0.

Definition 3.3 The function V(z) is called positive (negative) dejinite in a certain do-

main Dh if V(z) > 0 (< O) for all z # O in D/t.

Definition 3.4 The function V(z) is said to be positive (negative) semidefinitc in a

mrtain domain Dh if V(z) ~ O (~ O), and it can vanish also for some z # O in D),.

Theorem 3.1 If there exists for the system (~. 1) a positive (negative) definite function

V(z) whose total time derivative V(z) is negative (positive) semidefinite along every
trajectory of (S. 1), then the null solution is Liapunov stable.

The class,ic example of a ball rolling on a curved surface is presented to help illustrate

tbe first two definitions. Four different cases are shown in Figure 3,1, In each case, the

ball is shown in an equilibrium position and gravity acts downward.

The issue of stability is concerned with the qualitative motion of the ball subsequent

to a disturbance (nudge). Generally speaking, a stable equilibrium implies that “small”

disturbances do not cause the ball to move a “large” distance from its original position.

Cases (a) and (d) in Figure 3.1 are classified as Liapunov stable, but (d) is practically

stable only for small disturbances. Cases (b) and (c) are Liapunov unstable, although
(c) might be considered stable depending upon the application.

lt is clear from Cases (c) and (d) that determining just the Liapunov stability of
an equilibrium might not be adequate for all situations. Sometimes it may be. necessary

to provide additional information such as the magnitude of disturbances for which the
motion is guaranteed to remain near to the equilibrium. Example problems analogous

to Cases (c) and (d) are presented later in the chapter.

Theorem 3.1 and its attending definitions provide a concise statement of Liapunov’s

direct method. A major advantage of Liapunov’s direct method is that actual solutions
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(a)

(c) (d)

Figure 3.1. Simple illustration of stability concepts. (a) Liapunov stable. (b)

Liapunov unstable. (c) Liapunov unstable (may bestable for practical
purposes). (d) Liapunov stable (maybe unstable for practical purposes).
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to the governing equations are not required to prove stability. The primary difficulty

with applying this method is in finding a Liapunov function, V(z).

There are three possible equilibria for a rotating flexible structure. Each equilibrium

corresponds to a motion of simple spin about a principal axis whereby the elastic defor-

mations remain constant. Stability of a simple spin implies that small disturbances do

not lead to large changes in the structure’s attitude or elastic deformations.

Recall from Chapter 2 that the nominal spin is assumed to be about an axis parallel

to the unit vector bl. One possible measure of the departure from simple spin is the

angle, ~, between bl and the angular momentum vector. For an axisymmetric rigid

body, ~ is the half cone angle.

LJsing a property of the vector cross product, one obtains

Isin @[ = Il(bl x wlI/llMl
(2.8,2.13)

=
[[(~2b3 - hsb2)[l/h

(2:3)

m

= W’(’:+y:)

(2.71,2.72)
(3.4)

It is evident from Eq. (3.4) that small magnitudes of xl and yl imply small departures

from simple spin as measured by the angle ~. Likewise, small magnitudes of Xz, . . . . z,,+,
imply small elastic deformations. Thus, it is reasonable to state that a simple spin is

stable if the null solution2

*j(T) = O 0<7 <00, j=l,. ... n+l

yj(’T) = O O< T<OO, j=l,. ... n+l

to Eqs. (2.66-2.67) is stable in the sense of Liapunov.

A simple spin may be accompanied by constant elastic deformations
trifugal loading. Nevertheless, the variables X2, . . . . X,,+l can be defined in
that Eq. (3.5) is satisfied.

3.3 Hamiltonian Systems

3.3.1 Background

(3.5)

(:1.6)

caused by c.en-
such a manner

Certain aspects of Hamiltonian systems pertinent to later discussions are presented

here. To begin, consider a Hamiltonian system of differential equations given by

d 8H

%X1 = z
i=l ,.. .,m (3.7)

2The terms ~ull solution, ~qui]i~rlum, and equilibrium point are often used interchangea~ly when ‘efer-

ring to stability.
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d 8H--Yi . –—
~X;

i=l, . . ..m (3.8)

The Hamiltonian, H, is a function of thevariables (z, y) = (Zl,. ... Z,n, yl, y,,,),,,) and

is assumed not to explicitly depend upon time. It follows from this assumption that H

is constant along trajectories of Eqs. (3.7-3.8).

Assuming that (z, y) = (O,O) is an equilibrium point and H can be expanded as a

Taylor series; one has

H(z, Y) = Ho+ Hz(z, Y) + H3(z, Y) + . . “ (3.9)

where H,(z, y) is a homogeneous polynomial of degree s in the variables (x, y). Often

the constant, Ho, is neglected in Eq. (3.9) since it does not affect Eqs. (3.7-3.8).

Key to the analysis of Hamiltonian systems is the use of canonical transformations.

A canonical transformation of variables (s, y) + (~, j) preserves Hamilton’s equations.
That is, if

fi(~,~) = H(x, Y) (3.10)

then

afid. _

ZXi = dfii
2=1 ,.. .,m (3.11)

d dH__~i . –—
851

i=l, . . ..m (3.12)

It is possible through the use of canonical transformations to put a Hamiltonian into

its so-called normal form (see, e.g., [57, 54]). Assuming stability in the linear approxi-

mateion, a Hamiltonian normalized to degree k satisfies the properties

(3.13)

and

[Hj, H2](qv) = o j=3,4, . . ..k (3.14)

The left hand side of Eq. (3. 14) denotes the Poisson bracket of the indicated functions

and is defined as
‘“ dHj 8H2

X[
8Hj 8H2

[Hj!Hzl(=,v) ‘ —— – ————i=l dXi dyi 8Y1 ijX~ 1 (3.15)

The characteristic frequencies, fll, . . . . 0,,,, appearing in Eq. (:3.1:3)are said to satisfy
a resonance relatiou of order Z> 0 if there exist integers kl, . . . . k,,, such that

klQ1 +... + k,,, fl,,, = O (3.16)
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and

Ik,l+... +[km[=i (3.17)

Notice from Eqs. (3.9) and (3.13) that if cubic and higher degree terms in the Hamil-

tonian are neglected, then Eqs. (3.7-3.8) simplify to those for a set of uncoupled harmonic

oscillators with frequencies [O] 1,..., ]fl~l. It is shown in 2.3.2 that the normal form can
also be used to predict the dependence of frequency on amplitude. Thus, the theory of

the normal ftmn provides a generalization of linear modal analysis.

3.3.2 Stability

The governing equations for a rotating flexible structure given by Eqs. (2.66-2.67)

are inherently nonlinear. Nonlinearities arise because of the presence of cubic and higher

degree terms in the expansion of the Hamiltonian. Such is the case even for the simple
problem of rigid body motion.

Determination of stability for nonlinear Hami]tonian systems may or may not be a

simple matter. In many instances, the instability of an equilibrium can be determined

from a linear analysis of the nonlinear differential equations. If the general solution to

the linear equations involves a term with exponential growth, then the equilibrium is

unstable. This result holds for the nonlinear differential equations as well.

If the general solution to the linear equations does not contain any terms with
exponential growth, then no conclusion can be made regarding stability for the nonlinear

system. That is, an equilibrium stable in the linear approximation may not be stable

when nonlinear terms in Hamilton’s equations are included.

For the remainder of this discussion, it is assumed that the null solution to Eqs. (2.66-

2.67) is stable in the linear approximation and that the Hamiltonian is normalized to at

least degree four. Accordingly, one has

(3.18)

The Hamiltonian itself is a Liapunov function when all of the characteristic frequen-

cies in Eq. (3.18) have the same sign. This result follows from the sign definiteness of

Hz(z, y) and the constancy of lf(z, y) along trajectories of Hamilton’s equations.

Although there are exceptions, the characteristic frequencies are often all positive

for spin about tlw major axis. Consequently, H(x, y) is a Liapunov function and stability
follows from Theorem 3.1. Apparently, cubic and higher degree terms in the Hamiltonian
have no effect on Liapunov stability in these cases. An equivalent statement is that

stability is determined solely from consideration of the linearized equations.
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The situation is considerably different for spin about the minor axis. In such cases,

the characteristic frequencies can never all be of the same sign. Consequently, the Hanlil-
tonian is no longer a Liapunov function and can not be used to prove stability. It still

may be possible to prove stability using Liapunov’s direct method if an integral of motion
in addition to the Hamiltonian exists. The existence of additional integrals, however, is

the exception.

The quest for a general method of proving the stability of Hamiltonian systems

remains open. Indeed, even relatively simple systems such as the three body problem

have defied complete analysis. Elements of two theories having application to the stability

analysis of spin about the minor axis are described below.

KAM Theory

A significant advancement in the understanding of Hamiltonian systems was pro-
vided by the development of KAM theory. Named in recognition of the collective work

of Kohnogorov, Arnold and Moser, KAM theory has important applications to the study
of stability. Detailed descriptions of the theory and its applications are available in [58,

54] .

Most Hamiltonian systems are nonintegrable. That is, the number of degrees of

freedom exceeds the number of integrals (constants). Notable exceptions include linear

systems and systems with only a single degree of freedom.

LJnder certain conditions, KAM theory can be used to show that the trajectories
of nonintegrable systems often behave as if the systems were integrable. Near a stable

equilibrium (in the linear approximation), a large fraction of the phase space. is filled

by so-called KAM surfaces (see [58]). Trajectories lying on these surfaces are associated
with the regular motion of an integrable system. Such trajectories are stable, remaining

within a given neighborhood of the equilibrium for all times.

The fact that the phase space is not entirely filled by KAM surfaces precludes the

possibility of inferring Liapunov stability from KAM theory. An exception is for isoener-
get ically nondegenerate two degree of freedom systems. Here, trajectories not lying on a

KAM surface are constrained forever between adjacent surfaces. For systems with more
than two degrees of freedom, a slow drift from the equilibrium known as Arnold diffusion

is possible. Nevertheless, from the viewpoint of measure theory, stability can be shown

for most initial conditions near the equilibrium since the number of points in the phase

space not on a KAM surface is of measure zero.

If there are no resonance relations of order four or less, then Eq. (3.18) can be
expressed as

?1+1 ?1+1 11+1

H(P, 0) = ~ flip;+ ~ ~ ~ /?ij~,pj + 0([p15/2)
,=1 :=1 j=l

(3.19)
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where ~ij = @ji, [~[ = A + “ “ “ + Pn+l, ad the action-angle variables (P, e) are related tO
the original variables (z, y) by the canonical transformation

Xi = &Sinei i=l,...,n+l (3.20)

YI = ficosoi i=l,..., rz+l (3.21)

A system is said to be nondegenerate if

det

Al P12 . . . 01,71+1

012 D22 . . . /32,?,+1

“.

[P 1,n+l P2,n+l .00 /%+1,71+1

and isoenergetically nondegenerate if

#o

[

/%1 812 . . . P1,?L+l w

012 /5’22 . . . /5’2,?,+1 ~2

det ~ ~ “.O { ~

A,n+l P2,n+1 . . . LL+l,n+l ‘n+l

Q, 02 . . . fl,,+~ o )

KAM theory can be applied if a system is either nondegenerate
degenerate.

(3.22)

(3.23)+0

or isoenergetically non-

An example is provided to help illustrate some aspects of nonintegrable systems and

KAM theory. Tl~eexample deals witllthe xnotion oftllerotatix~g flexible syste~n described

in the Appendix. Elastic deformations are described in terms of a single generalized

coordinate (n = 1). Therefore, the system has a total of two degrees of freedom.

A commonly used method for illustrating the behavior of two degree of freedom

systems is the Poincar& surface of section (see, e.g. [59, 58]). The method, as applied to

the example problem, is summarized below.

1.

2.

3.

4.

5.

6.

Choose initial conditions for X2 and yz.

Set rns equal to zero.

Pick m2 so that G’ (see Eq. (A.9)) is equal to zero.

Set m, equal to ~~.

Numerically integrate Eqs. (2.35-2.39) over some specified period of time, plotting
X2 and y2 each time that m3 becomes equal to zero.

Return to Step 1 to begin a new trajectory.
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The conditions imposed in Steps 3 and 4 ensure that all of the trajectories have the same

energy and angular momentum as a simple spin.

Poincar6 surfaces of section are shown in Figures 3.2-3.4 for the values of the physical

parameters given in Table 3.1. The parameters used for Figure 3.2 were specifically chosen

to result in an integrable system (lZ = 13). Parameters associated with nonintegrable

systems were used for Figures 3.3 and 3.4. In all three figures, the point (0,0) is associated

with a simple spin about the axis of minimum moment of inertia.

A trajectory lying on a KAM surface is indicated by a set of points forming a smooth

closed curve. Not surprisingly, all of the points in Figure 3.2 appear to lie on smooth
curves. This result follows from the fact that KAM surfaces fill the entire phase space

for integrable systems. The trajectories associated with Figure 3.3 also appear to lie on
KAM surfaces, even though the system is nonintegrable.

Notice in Figures 3.2 and 3.3 that all of the points are enclosed within a region

of the X2 — y2 plane bounded by a solid line. Initial conditions outside of this region

are not physically possible because of the constraints imposed in Steps 2-4. As the

spring stiffness in the model is increased, the region of the xz-y2 plane which is accessible

becomes smaller.

The observations of the previous paragraph have relevance to the stability analysis of
relatively stiff structures. If a structure is sufficiently stiff, then the region of phase space

which is physically accessible may preclude the possibility of large changes in attitude or

elastic deformations. This point is illustrated later in the chapter by an example problem.

Comparison of Figures 3.3 and 3.4 shows that a significant change in the system
behavior results by reducing the value of the spring constant. Although KAM surfaces

are also evident in Figure 3.4, not all of the trajectories appear to lie on such surfaces.

The unstructured distribution of some points in Figure 3.4 is associated with a single

chaotic trajectory. The positions in the figure Iocatecl at (0,0) and near (1.45,0) are

associated with stable periodic. trajectories in which the system moves as a rigid body.

The position located near (-1.25,0) is associated with an unstable periodic solution.

As a final note, stability of spin about the minor axis can be proved for the. integrable

system using Liapunov’s direct method. The procedure simply involves construction of
a Liapunov function from two independent integrals. The stability of the nonintegrable

system follows from KAM theory and the isoenergetic nondegeneracy of the system (see

[60]).

Formal and Approximate

Another apfiroach to the

Integrals

analysis of stability involves the use of formal integrals. As
an introduction, let r denote the total number of independent resonance relations among
the characteristic frequencies for the Hamiltonian in Eq. (3.18). The resonance relations
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Table 3.1. Physical parameters used for Figures 3.2-3.4.

Figure + + y K a5 /9

3.2 2.0 2.0 0.15 1.00 0 1

3.3 2.0 1.5 0.15 1.00 0 1

3.4 2.0 1.5 0.15 0.10 0 1

0.3 I I 1 r 1 1

0.2 -

0.1

-0.1

-0.2 -

-0.3 1 1 1 1 1
–0.75 -0.50 -0.25 0.00 0.25 0.50 0.75

X2

Figure 3.2. Poincar6 surf~.e of section for an integrable system (& = 1.0).
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0.3 I 1 1 I I I 1

0.2 -

0.1

2

–0.1

-0.2 -

-0.3 1 1 I 1 1

-0.75 -0.50 -0.25 0.00 0.25 0.50 0.75
X2

Figure3.3. Poincar6 surface of section for a nonintegrable system (% = 1.0).

0.3 1 1 , 1 I 1 I I I

0.2

0.1

g 0.0 -

-0.1

-0.2 -

-0.3 1 1 1 1 1 1 I 1

-2.0 -1.5 –1 .0 -0.5 0.0 0.5 1.0 1.5 2.0
X2

,.... ... . . ....-,. . .. ..... ..‘-” . ..

.-.

. ..”-.
. .,.

.-, ,
. . .

. . ..
.,

,-

~:,,., ,. ..““.:>< ~..... ““”-......,,.....”’ .,..::. ~::””. ~! ~’

:P-
..

. . . . . . . . . . . .. . . -.’

Figure 3.4. Poincar6sufi- ofwction foranonintegrable system (~= O.l).
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can be expressed in matrix notation as

Kfl=O (3.24)

where

‘=[:::::1 (3.25)

and
!2=[!21 Qz . . . !-ln+l]T (3.26)

The columns of a matrix C are assumed to span the null space of K. That is,

KC’=0 (:3.27)

According to the theory of the normal form, formal integrals of the Hamiltonian

system are given by

I/(Z, ~) = ~ ~Ci/ (Z:+ ~~) 1=1 ,.. .,n+? –?’ (:3.28)
t=l

If the formal integrals can be combined with the Hamiltonian to form a positive definite
function, then the equilibrium (z, y) = (O,O) is said to be formally stable. According

to Bruno [61], no example of Liapunov instability has been found for formally stable

systems.

One obstacle to showing fortnal stability for actual problems is that the character-

istic frequencies are known only to limited precision. Uncertainty in the values for the

characteristic frequencies is an inevit able consequence of ever-present modeling errors.
As a result of this uncertainty, the number of independent resonance relations to all

orders can not be known.

An alternative to formal integrals is realized by consideration of only lower order

resonances. Let t denote the number of independent resonance relations of order k or
less. Matrices ~ and ~ associated with these resonance relations are defined analogously

to K and C’.

Approximate integrals for the Hamiltonian system are given by

1=1 ,.. .,n+?$?$ (3.29)

The above integrals are approximate in the sense that their time derivatives are zero if
terms following ~~(x, y) in Eq. (3. 18) are neglected. Stated differently, the approximate
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integrals are exact integrals for an alternate system with the’ Hamiltonian

(3.30)

Liapunov stability holds for the alternate system if the approximate integrals and fi can
be combined to form a positive definite function.

In some situations, there may exist a greater number of approximate integrals than
is given by Eq. (3.29). For example, integrable systems always possess 71 + 1 indepen-

dent integrals regardless of the number of resonance relations. Determination of all the
approximate integrals can be made during the calculation of the normal form.

Approximate integrals also have application in establishing lower bounds on the

time interval during which a trajectory remains within a certain neighborhood of the

equilibrium. ln this regard, mention is made of the work of Celletti and Ciorgilli [62] on

the restricted three body problem.

A brief explanation of a simple approach to obtain the aforementioned bounds is

presented below. Let the Hamiltonian for a system be normalized to degree k and
assume that the associated approximate integrals are combined to form a positive definite

function given by
71+1

;=1

The function, C(X,y), defined as

~=m

can be thought of as a measure of the distance between

of the phase space.

Within a specified neighborhood of the equilibrium,

the point (z, y)

it can be shown

(3.31)

(3.32)

and the origin

that

(3.33)

where A is a positive constant. The inequality above follows from L(z, y) being an
approximate integral and normalization of the Hamiltonian to order k.

Integration of Eq. (3.33) between the limits O < ~ < T yields

[(k + 1)/2 – l]AT > [L(xo, y,)] ’-(k+l)i’ – [L(q-, y~)]’-(~+l)l’

which, followed by substitution of Eq. (3.32), yields

1- (l/a) ~-’ ~l,((xo, yO)l~_l

‘> A[(k+l)/2– 1]

(3.34)

(3.35)
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where

a = e(x~, W)/~(~o, ?40) (a> 1) (3.36)

Equation (3.35) provides a lower bound on the time required for C(Z, y) to increase from

its initial value, C(zo, ye), to some arbitrary value, c(z~, y~). Such a bound may be useful

if stability must be shown only during a finite time interval.

3.4 Stability Criteria

In the light of the KAM theory, it is reasonable to focus attention on systems pos-

sessing at least one resonance relation of order four or less. In the following section, it is

assumed that only a single resonance relation exists among the characteristic frequencies

andthat Qj#Oforj= O,..., n. Guidelines for the stability analysis of systems with

multiple low-order resonance relations are discussed separately.

3.4.1 Single Resonance Relation

Stability criteria are presented below for systems with a single resonance relation of

order four or less. All systems satisfying these criteria are formally stable. Two degree

of freedom systems (7L = 1) satisfying the criteria are also Liapunov stable.

One can assume, without loss of generality, that the integer ICI in Eq. (3.16) is
positive. Furthermore, it is necessary only to consider cases for which k2,. . . . k,,+l are all

greater than or equal to zero. Otherwise, it follows that the system is formally stable.

The development below for a resonance relation of order two is a simple extension

of Sokolskii [63]. In this case, one can consider ICIand kz equal to unity and IC3,.. . . k,,+l
equal to zero. The normal form of the Hamiltonian is given by

o([plsi~) (3.37)

Let

where

F(4) =a+Lsin2~+ csin#+dcos# (3.38)

a = aoo+ aol + ale+ all

b=A

c = f?cos(lp, – 0,) + C’COS(03 – 41)

d = l?sin(~z – @l) + Csin(+s – @l)

(3.39)

(3.40)

(:3.41)

(3.42)

49



If F(d) is not equal to zero for all O s ~ < 27r, then the equilibrium is stable. lf F(qY) = O

for some & and F’(F) # O, then the equilibrium is unstable.

The following results for resonance relations of third and fourth orders are adopted

from Khazin [64]. The normal form of the Hamiltonian is given by

n+l n+l n+l

~(lP15’2) (3.43)

The stability criteria for a third order resonance relation are

n+l n+l

A = O and ~ ~ aijkikj # O ~ stability
i=] j=l

A # O ~ instability

The stability criteria for a fourth order resonance relation are

IAI < \n~~aijkikjl/~- ~ stability
i=l j=]

n+l n+l

The stability of a system on the borderline of any of the above criteria is determined

by fifth or higher degree terms in the expansion of its Harniltonian.

3.4.2 Multiple Resonance Relations

The stability analysis of systems with multiple resonance relations may prove difficult

in certain situations. One potential complication to the analysis of such systems is that

the normal forms may not be as simple as those for the single resonances. Consequently,

the techniques used to establish stability criteria in the previous section may not be

applicable. The present author is unaware of a general procedure to establish necessary
and sufficient conditions for stability in the presence of multiple resonance relations of

order four or less.

Regardless of the potential difficulties, it is often possible to prove stability to a
certain level of approximation simply by construction of a Liapunov function from the
available integrals. As an illustration, consider a hypothetical system with fll = – 1,

flz = 50, fl~ = 100, fl~ = 101, and fl~ = 102. Neglecting all resonance relations of order
five and greater, one has

[

1 0–110
~{ (325) ~ o

0–11
1–2010 1 (3.44)
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The columns of the matrix

~ (3:7)

[ 111210T

–10012
(3.45)

span the. null space of K, therefore, the integrals

exist. Multiplication of Eq. (3.46) by a factor of 2 and addition with Eq. (3.47) leads to

the Liapunov function

Stability is thus proved for the hypothetical system if degree five and higher terms in the

expansion of the Hamiltonian are ignored.

Observe that stability of the hypothetical system is inferred solely from consideration

of the characteristic frequencies. Once the matrix C is formed, it is apparent that a
Liapunov function can be formed from the integrals given by Eq. (3.28). As a result,

normalization of the Hamiltonian beyond degree two is not required.

It is noteworthy to mention again that there may exist integrals in addition to those
given by Eq. (3.28). Consideration of all possible integrals is important if the integrals

given by Eq. (3.28) can not be combined with the Hamiltonian to form a Liapunov

function. Such considerations require the calculation of the normal form beyond degree

two.

3.5 Example Problem

A stability analysis and numerical simulations are presented in this section for an

example problem. The intended purpose of the analysis is to detnonstrate the use of

the stability criteria developed in the previous section. Simulations are included to also
facilitate the discussion of certain aspects of stability which were heretofore only alluded

to.

The problem under consideration deals with the two degree of freedom system de-

scribed in the Appendix. Quadratic, cubic and quartic terms in the expansion of the

Hamiltonian (see (A. 10)) are given by

(3.49)
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(3.51)

Definitions of the various terms appearing in Eqs. (3.49-3.51) are provided in the Ap-
pendix. ‘

Thedimensionless quautitiesll/~2 and 11/~3are both less than unity for spin about

the minor axis. Accordingly, the characteristic frequencies determined frotn normaliza-

tion of 112(z, y) are given by

Q,
(349)

(3.49)
!& =

-@ - 11/12)(1 - L/T3) (3.52)

(3.53)

It follows from the application of the stability criteria developed in 3.4.1 that of all

possible second, third, and fourth order resonance relations, the only two that can lead

to instability in this example are

x-l~+fl~ = o (3.54)

!-l,+!-1~ = o (3.55)

3.5.1 Resonance Relation ‘2f11+ 02 = O

Normalization of the Hamiltonian through degree three (see [65]) shows that the

constant A appearing in Eq. (3.43) is given by

(3.56)

According to the stability criteria established earlier, the simple spin is stable only if

A = O. This condition corresponds physically to either an axisymmetric body (Iz = 13)
or the rest position of the particle coinciding with the carrier body nm.ss center ((~ = O).

Satisfaction of either of these two conditions guarantees spin stability.

A series of simulations is presented in Figures 3.5-3.12 to help illustrate the behavior
of the system when the resonance relation 201 + Qz = O is satisfied or nearly satisfied.
Shown in the figures are plots of the momentum scalar, 7712, and generalized coordinate,

Zz, as functions of the dimensionless time variable, ~. Results were obtained from nu-
merical integration of Eqs. (2.35-2.39) using the parameter values and initial conditions
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Table 3.2. Physical parameters and initial conditions used in Figures 3.5-3.12 and

16-17. Initial conditions for ml are given by
ml(o) = [1 – ?-&(o) – m;(o)]l?

Figure(s) p + y ~ a, p m,(0) m3(0)

3.5-3.6 2.0 1.3 0.15 0~09;6 0.00 1 0.035 0
3.7-3.8

3.9-3.10
3.11-3.12

3.16
3.17

2.0
2.0
2.0
2.0
2.0

1.3

1.3

1.3

1.5
1.1

0.15

0.15

0.15

0.20

0.20

0.1046

0.1046

0.0996

0.0449
0.0252

0.00
0.00
0.10
0.00
0.00

1

1

1

1

1—

0.035
0.071
0.035
0.045
0.045L

o
0
0
0
0

w
o 0.010
0 0.020
0 0.010
0 0.015
0 0.015

reported in Table 3.2. Initial conditions were chosen so that the energy and momentum
correspond to those for a simple spin.

It is evident from Figures 3.t5 and 3.6 that satisfaction of the resonance relation

2fll +flz leads to instability. Notice that although the motion is unstable, the magnitudes

of mz and Z2 are bounded. This result follows from the fact that the total energy of the

system must remain constant.

As was noted earlier (see Eq. (3.4)), the angle ~ provides a measure of the departure
from simple spin. For the simulation associated with Figures 3.5 and 3.6, the value of @

varies from about 2 degrees at ~ = O up to approximately 60 degrees around ~ = 355.

Such variations in q+indicate large changes in the attitude of the structure.

Similar plots are shown in Figures 3.7-3.10 when the system satisfies the near reso-

nance condition 2.0501 + !lJ = O. The simulations associated with Figures 3.7-3.8 and

3.9-3.10 are identical in every respect except for the choice of the initial conditions (see
Table 3.2).

Liapunov stability is expected since neither of the resonance relations in Eqs. (3.54)

and (3.5.5) is satisfied. The stable behavior displayed in Figures 3.7 and 3.8 is consistent

with this expectation. In constrast, the unstable growth exhibited in Figures 3.9 and 3.10

is somewhat unexpected. The simple spin is indeed Liapunov stable, but for practical
purposes the motion may be considered unstable. The situation is analogous to the one

depicted in Figure 3.1 (d).

The observations in the previous paragraph show that a resonance relation need Ilot
be satisfied exactly for unstable motion to occur. Such considerations are important in

practical applications, especially when the values of the characteristic frequencies are
only known approximately.

A fourth illustration of the system behavior for 201 + f12 = O is provided in Fig-
ures 3.11 and 3.12. Here, the parameters and initial conditions are identical to those

53 I



0.8

0.6

0.4

0.2

E 0“0

-0.2

-0.4

-0.6

-0.8
o 50 100 150 200 250 300 350 400 450 500

T
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used for Figures 3.5 and 3.6, with the exception that the parameter a5 is nonzero. A
nonzero value of this parameter is associated with a cubic nonlinearity in the spring
force-deflection relation, leading to a quartic term in the Hamiltonian (see Eq. (:3.51)).

The initial growth of the solutions displayed in Figures 3.11 and 3.12 indicates that
the simple spin may be unstable. Such a result is expected since the parameter as does not

appear in Eq. (3.56). Although the motion is Liapunov unstable, it appears to be stable

for practical, purposes. The situation is analogous to the one depicted in Figure 3.1 (c).

The relatively small growth of Z2 in Figure 3.12 can be explained using an argument

based upon energy considerations. Regardless of the manner in which the motion evolves,

the strain energy in a system can never exceed the total energy initially imparted to

the system. Because of the significant hardening of the spring, moderately-sized elastic

deformations are associated with values of strain energy in excess of the total energy.

Consequently, the magnitude of Xz is constrained to relatively small values.

3.5.2 Resonance Relation fll + Qz = O

Normalization of the Hamiltonian through degree four (see [63]) results in the fol-

lowing expressions for the nonzero constants appearing in Eq. (3.43).

3(25
a22 = (3.59)

2(1 - 1,/1,)(1 - w,) (y)’

where

b~ = (ll/~k)z/(l – ll/~k) (k= 2,3) (3.61)

According to the stability criteria for the (l, + flz = O resonance relation, spin about the

minor axis is stable if

[all +a12+a21 +a221 > [Al (3.62)

Stability diagrams in the /l /~z-Jl /13 parameter space are given in Figures 3.13-

3.1.5. Boundaries of stability are obtained by finding the locus of points that satisfies the
equation

]all + al, +a,l +a,,[ = [Al (3.63)
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Figure 3.13. Stability diagram in the 11/~z-ll / T3parameter space for &~ = O.

Regiol~s labeled =( S)alld(lJ) arestable al~dullstable, respectively. Points within regions
labeled as (N) are not physically realizable; the sum of two principal moments of inertia

in these regions does not exceed the third.

Notice from Eqs. (3.57-3.62) that the parameters affecting stability are 11/~z, 11/~3,
$~~ and ~s. The value of /~2~ is increased uniformly from zero in Figure 3.13 to 0.20

in Figure. 3.15. In each of the three figures a5 is equal to zero.

It is evident from Figures 3.13-3.15 that increasing the value of /32~ increases the

total area of the unstable regions. Increasing ~J~ corresponds physically to moving the

rest posit ion of the particle away from the carrier body mass center.

Results of two different simulations are presented in Figures 3.16 and 3.17 as a check

of the stability diagram given in Figure 3.15. Specific values of the parameters /1/ ~j and

II/ L] used in the simulations correspond to the two marked points in Figure 3.1.3. Values

of all the other parameters and initial conditions are reported in Table 3.2. The stable

and unstable behavior exhibited i[l Figures 3.16 and 3.17, respectively, is consistent with
the stability diagram in Figure 3.15.

3.6 Summary

.AI1 irlvestigation is made in this chapter of tl}c stability of flexible structures spin-

ning about a principal axis of inertia. Particular attention is paid to the stability anal-
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ysis of spin about the minor axis. The structures under consideration are assumed to

be completely unrestrained, undamped, and free of applied moments. Central to the
development is the equivalence of the governing equations of motion to a Hamiltonian

system (see Chapter 2). Using this equivalence, existing theory for Hamiltonian systems

is applied to the stability analysis of rotating structures.

It is shown that a motion which is spin stable in the linear approximation may be
unstable when nonlinear terms are included. For linearly stable systems, the existence of

at least one low-order resonance relation among the characteristic frequencies is typically

required for instability. Stability criteria are developed for systems satisfying a single

resonance relation of order four or less. Guidelines are also provided for determining the

stability of systems possessing multiple resonance relations. An example is provided

to demonstrate the application of the stability criteria. Results based upon numerical

integration of the equations of motion are shown to be consistent with the results of the
stability analysis.
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4. Modeling

This chapter is concerned with the investigation and development of a recently for-

mulated method for modeling rotating flexible structures, Originally proposed by Segal-

man and Dol&ann [51], the method employs a quadratically coupled set of deformation

modes to account for geometric stiffening effects. These stiffening effects are not ac-
counted for when conventional linear approaches are adopted.

An exposition is presented of the key features of the new method. Expressions

are derived for the strain energy and kinetic energy of a structure in terms of a set of

generalized degrees of freedom. These expressions can be used together with results from
Chapter 2 to form the equations of motion. Reciprocal relations are established between

the. deformation modes using an argument based upon conservation of energy.

Computational techniques are developed which facilitate the application of the method.

It is shown how all of the terms appearing in the equations of motion can be determined

using a finite element analysis code. Motion studies of specific problems found in the

literature are provided for purposes of verification. The computational advantages of the

new method over a commercially available finite element analysis code are also shown.

4.1 Background

As was noted in Chapter 1, the literature on rotating flexible structures is quite

extensive. It is apparent that a great deal of attention has been focused on the analysis of

beam-type structures. A lesser, yet significant, effort has been directed towards rotating

plates and shells. In both cases, the approaches vary in complexity from the use of fully
nonlinear, geometrically exact theories to linearization of the governing equations about

an equilibrium.

IJnfortunately, a large segment of the literature may not be of much practical use to
the analyst. Many papers offer fundamental insight into the behavior of rotating struc-

tures, but their usefulness for quantitative prediction is limited to the specific problem

analyzed. Such limitations provided much of the impetus for the present work.

Introduction of the finite element method significantly broadened the size and types
of problelns that can be analyzed. The dynamic response of nonrotating structures can

be determined in a straightforward, efficient manner using any one of a number of c.on]-
mercially available programs. Commercial codes can also be used to study the dynamics
of structures undergoing large angle motions, but the computational requirements may
I.mcome excessive even for relatively simple structures.
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Figure 4.1. Simple illustration of linear and quadratic modes for a pendulum.

Several authors have presented theories for efficiently incorporating finite element
methods into the analysis of rotating flexible structures. Most closely related to the

present method is the work of Zeiler [49] and Banerjee and Dickens [,50]. In both of
these approaches, geometric stiffness matrices are calculated for different combinations
of steady inertial loads. These nlatrices are then used during a dyuanlic simulation
to provide the geometric (centrifugal) stiffening. Not unlike the present nlethod, these

approaches reduce the computational requirements for a problem by using a relatively

small number of generalized degrees of freedom.

4.2 Introduction

The present method is similar to a conventional assumed mode approach with the
addition that nonlinear terms are retained in the kinematics of deformation. As an

illustration, consider the small amplitude motion of the vertical pendulum shown in

Figure 4.1. The linear mode is associated with the horizontal motion and the quadratic

mode is associated with the smaller vertical motion. The. terminology “quadratic.” mode

derives from the observation that for horizontal displacements of amplitude q, the vertical
displacements have amplitudes proportional to q2.

Linear and quadratic modes can he calculated analytically for simple problems like
the pendulum, or, as is shown later, with a finite. element analysis code for more c.ompli-
catecl structures. Once obtained, the mode shapes are used in forming the equations of
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motion.

The contribution of the quadratic modes to the equations of motion becomes impor-

tant when existing loads have a significant geometric stiffening effect. For the pendulum

shown in Figure 4.1, the restoring effect of gravity is predicted only if the second order

motion in the vertical direction is included. An analogous situation is observed in beams

where the effect of an axial load on the transverse stiffness is accounted for only when a

nonlinear theory is used.

The present method provides an efficient means for modeling the dynamics of ro-
tating flexible structures. The method accounts for nonlinear effects such as geometric

stiffening and is applicable to a broad range of structures. Practical application of the

method is facilitated through the use of a nonlinear finite element analysis code.

4.3 Theoretical Development

The basic idea underlying the present approach is to express elastic deformations

in terms of the nonlinear response of a structure to a set of static loads. To illustrate,

consider the system of particles shown in Figure 2.1. Fixing the reference frame B, the

system is subjected to a static loading in which the force acting on the I’th particle is

given by
lL

f’(q,, . . ., q,,) = ~ qif{ (Z=l,..., NP) (4.1)
anl

where ql, . . . . q,~ denote generalized degrees of freedom. The set of vectors fj for 1 =

1,. ... NP is collectively referred to as the i’th basis force.

The complete, nonlinear, static response to the loading given by Eq. (4.1) can be

expressed as a Taylor series expansion. Retaining only the linear and quadratic terms of
this expansion, one obtains

(4.2)

where ~~ and ~~j denote elements of the linear and quadratic modes, respectively. It is

assumed, without loss of generality, that ~~j = #~i for all i and ~.

Notice that Eq. (4.2) simplifies to a conventional assumed mode approach if the

quadratic. terms in the qi’s are neglected. It is shown later that the quadratic terms in
Eq. (4.2) must be retained in order to account for geometric stiffening.

It is evidet?t from Eqs. (4.1) and (4.2) that the linear and quadratic modes are
determined by the choice of the basis forces. Often it is appropriate to associate the
basis forces with the natural modes of vibration, however, there is no restriction on their
choice.
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4.3.1 Reference Frames

Recall from Chapter 2 that the reference frame f3 is intended to follow the nominal

rigid body motion of the system. A discussion of several options for accomplishing this

is given by Canavin and Likins [32]. Two such options, the locally attached and Buckens

frames, are discussed below.

For a locally attached frame, 1? is rigidly fixed to a specific part of the system.
A simple illustration is provided by a turbine in which blades are attached to a rigid,

rotating hub. Here, the reference frame 1? could be chosen as the hub itself. Example

problems are. presented later which make use of locally attached frames.

A second option which is useful for unrestrained systems is the Buckens frame. It

was shown by de Veubeke [31] that such a frame has the appealing feature that the

mean square of relative displacement is minimized. In addition, a condition of zero

relative linear momentum and a linearized condition of zero relative angular momentum

are satisfied.

It is assumed in the previous section that f? remains fixed during the static loading.

In the context of the illustration for the locally attached frame, this condition simply

means that the hub is made stationary. For the Buckens frame, this condition implies

that

~m~(r’ + u*) = O (4.3)
i=l

and
P

5( T1l’iri X Ui) = O (4.4)
1=1

Implicit in Eq. (4.3) is the assumption that the origin of 1? coincides with the mass center

of the system.

Equations (4.3)

static loading. Such

and (4.4) represent linear constraints which are imposed during the

constraints are easily accomodatecl by the finite element method.

4.3.2 Strain Energy

An expression for the strain energy in terms of the qi’s is derived in this section. To
begin, consider a quasi-static application of the basis forces to the system. Fixing the

qi’s, the loads on the system are assumed to be given by

lL

f((S)= ~ S~if/ (l=l,..., fvp) (4.5)
i=l

where s varies from zero to unity.
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It follows from conservation of energy that the work done by the applied loads equals

the change in the strain energy, U, of the system. Thus,

It is assumed in the derivation of Eq. (4.6) that all of the loads are applied sinmlta-

neously. (’onsider an alternative scenario in which:

1. The loads associated with the basis force i are applied.

2. While holding the loads from Step 1 constant, the loads associated with the basis
force j are applied.

The changes in strain energy resulting from Steps 1 and 2 are given, respectively, by

and

2q~qjf~ “d~j + qiq~(f~ “ @{j + ‘1 “ @~j)

The total change in strain energy, [Jij, is the SUIII of Ui and Uj. Thus,

(4.7)

(4.8)

(4.9)

The strain energy is independent of the order of the loading, hence,

(Jij = lJji (4.10)

Substitution of Eq. (4.9) into Eq. (4.10) and equating like powers in the. qi’s yields the
reciprocal relations

(4.11)
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and
Np Nv

Equations (4.1 1) and (4.12) can be used as a check once the linear and quadratic modes

are determined.

4.3.3 Kinetic Energy

Recall from Chapter 2 that the kinetic energy of the system can be expressed con-
veniently in terms of the mass matrix, M. Expressions are developed in this section for

the elements of M in terms of the qi’s.

Equations (2. 14) and (2.2’2) are repeated below for convenience.

(4.14)

Expansion of Eqs. (4.13) and (4.14) and equating the coefficients of like terms yields

1=1

1=1

Np

1=1

N.

1=1

P

m13 = -5 (772,/ 7“{ + u; )(7”! + ~i)

1=1

1=]

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.’20)

(j=l,..., n) (4.21)

(j= l,... , 71) (4.22)

68



N.

?i23,j+3 = x m[
/=1

N,

?rli+3,j+3 = E ml
1=1

[

, Ou;1 M – (,: +u,)~
(“! +%) ~qj 1 (j=l,...,71)(4.23)

[

au; au; au~ au; ~ au; au;
+—— —— ——

ilq~ ilqj aqi aqj aqi aqj 1 (i,j=1,...,71) (4.24)

Equations with explicit dependence on the qi’s are obtained from substitution of

(4.25)

into Eqs. (4.15-4.24).

It is shown in Chapter 2 that the equations of motion can be expressed entirely in

terms of the strain energy and the mass matrix. Thus, the governing equations can be

formed once the right hand side of Eqs. (4,6) and (4.15-4.24) are known.

4.3.4 Effects of Moments and Rotational Inertia

Recall from 4.3 that the static loading used to determine the linear and quadratic

modes only involves concentrated forces. Moreover, in the derivation of Eq. (4. 13) the

particles of the system are assumed to be point masses with zero rotational inertia. The

development is extended in this section to account for the effects of concentrated moments
and rotational inertia.

As before, the static forces acting on the system are assumed to be given by Eq. (4.1).

Provision is now l~lade for the loading to include concentrated moments as well. Letting

t~ denote the moment acting on the l’th particle, one assumes that

11

t’(q,,. . . ,qn) = ~qit~ (l=l,..., fvp) (4.26)
izl

where the vectors t{ (1 = 1,. ... ~P) comprise the i’th basis torque. Like the basis forces,

the basis torques can be associated with the natural modes of vibration, however, there

is no restriction on their choice.

The static response to the loading given by Eqs. (4.1) and (4.26) can be expanded

as a Taylor series. The deflections of the particles are expressed as before by Eq. (4.2),

whereas the rotations are given by

?1

e’(ql,.. . ,q,,)= ~$’iv~ (l=l,..., NP) (4.27)
i=]

Notice that only the linear terms of the Taylor series are retained in Eq. (4.27). This
is in contrast to Eq. (4.2) where quadratic terms
geometric stiffening.

are retained in order to account for
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The inclusion of applied moments and rotational inertia in the formulation necessi-

tates slight modifications to the equations obtained earlier for the strain energy and the

mass matrix. Once these modifications are made, the equations of motion are formed iu

the same manner as before. It is noted that in many problems the effects of rotational

inertia can be neglected without affecting the results of simulations significantly.

Strain Energy

the

the

To determine the strain energy, it is necessary now to also include the work done LY

concentrated moments. Therefore, one must add to the right hand side of Eq. (4.6)

term Ut, where

Mass Matrix

Let c: ,c~,cj

‘“=g;$bt: “Q:
(4.’28)

t=l j=l

denote unit vectors fixed in the l’th particle and parallel to bl ,b1,b3

when the system is undeformed. It is assumed, for simplicity, that the inertia dyadic of

the. l’th particle is diagonal and given by

(4.29)

Defining,
~:~ E ~: . bk (k=l,’2,3) (4.30)

and
n

(j; ~ x%v:k (k=l,2,3) (4.31)
i=l

the rotational kinetic energy, 7“1, of the J’tll particle is given ~Y

T“ = ;iw’
k=l

(4.32)

where 71

It follows from Eqs. (4.32) and (4.33) that the required additions to the mass matrix are

given by

(4.34)

(4.35)

1=1

1=1
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/=1

Np

1=1

N,

1=1

1=1

1=1

1=1

(j=l ,.. .,?1)

(j=l ,. ..,71)

(j=l ,.. .,?1)

1=1

N.

“Li+3,j+3 = x Mlwjl + 4AP:2 + lM343 (i,j=l,..., n)

1=1

4.4 Computational Techniques

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)

The inertia properties and the linear and quadratic modes of a structure must be
determined in order to apply the present approach. For simple problems, it may be pos-

sible to obtain closed-form expressions for these quantities. More c.omplic.ated problems

may require the use of numerical techniques.

A major advantage of the present approach is its applicability to a variety of prob-
lems. By utilizing a finite element analysis code capable of nonlinear static analysis, the

linear and quadratic modes can be determined for a wide range of structures. Codes capa-

ble of linear dynamic analysis can be used to calculate the necessary mass and rotational

inertia terms.

Computational techniques are presented in this section which make use of finite
element analysis results to determine all of the required quantities. A discussion is also
provided on how to determine the basis forces and torques associated with the natural

modes of vibration.
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4.4.1 Calculation of Linear and Quadratic Modes

Recall that the linear and quadratic modes are defined in terms of the static response
of a system to the loading given by Eqs. (4.1) and (4.26 ).3 Let u~(si) denote the static

deflection of the l’tb particle for a loading in which qi = si and qj = O for j # i. The
Taylor series expansion of u~(si) is given by

(4.44)

where ‘“P/ denotes a monomial of degree m in the variable si. Similarly,

U1(–Si) =
21 ~pl + 4p: –‘Saf$~ + ‘itila — i ‘PI + 0(s;) (4.4!5)

U1(ZSi) = ~S1#~ + A.~~@~i + 8(3 P/) + 16(4 P/) + 32(5 P/) + ~(s~) (4.46)

ll~(-~.$i) = –ZSi#\ + 4s~#~i – 8(3 P/) + 16(4 P/) – :12(5P~) + ~(S~) (4.47)

It follows from Eqs. (4.44-4.47) that

(4.48)$~i =
Uf(Si) + Uf(–Si)

2s:
+ 0(s: ) (2= 1,...,?,)

and

+:i =
161u1(si) + U’(–si)] – [1.1’(~si) + u~(–zsi)] + ~(s~)

(2= 1,..., ?1) (4.49)
24s;

The numerators in Eqs. (4.48) and (4.49) can be evaluated using nonlinear static finite

element analysis results once a value of .si is specified. Estimates for the quadratic modes
are then obtaiuecl by neglecting the higher order terms in these equations.

The accuracy of the estimates for the quadratic modes depends to a large extent

on the value chosen for si. If computers had unlimited precision, then one. could simply

assign a very small value to si and obtain excellent results. This is not advisable for

practical purposes since s: appears in the denominators of Eqs. (4.48) and (4.49).

Experience indicates that for double precision arithmetic, .~i should be chosen such

that the maximum displacement is somewhere between 10–3 and 10–5 times the maximum

dimension of the structure. The accuracy of the estimates can be measured by the
agreement between the results from Eqs. (4.48) and (4.49). It may lx necessary in some
cases to modify the initial choice for si.

Equations for estimating the quadratic modes #\j with z # j are presented below.

Let u~(.si, .sj) denote the static deflection of the l’th particle for a loading with qi = .~i,

qj = Sj) and qk = O for k # ~ and k # ~. Expanding u~(si>sj) asa Taylor seriesWJds

3Loads involving concentrated moments are permitted only for finite element models which have rota-
tional degrees of freedom. Examples include structures modeled with beams, plates, or shells.
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where ‘“P/j denotes a polynomial containing only degree m terms in the variables s; and
.Sj .

Using Eqs. (4.44) and Eq. (4.50) one obtains

ii’(Si, Sj) = 2S~Sj@~j + ‘p/j+ ‘p/j + ‘p/j + ‘(S? + ‘~) (4.!51)

where

li’(S,,.Sj) = U’(S~,Sj) - U’(S,) - U’(Sj) (4.52)

and
“’p:j = “’p!. – mp; – n’p;*J (4.53)

Similarly,

‘i’(-s~,‘Sj) = 2si-’j$tj - 3pi’j + ‘p/j - ‘Pi’j + ‘(s: + ‘~) (4.!54)

ii1(2S~, 2Sj) = 8s1sj#~j + 8(3~~j) + 16(4~~j) + s2(5~/j) + ~(s~ + s;) (4.55)

til(-2S~, ‘2Sj) = 8s1sj#~j – 8(3~/j) + 16(4~/j) – 32(5~/j) + 0(.s~ + .s;) (4.56)

It follows from Eqs. (4.51) and (4.54-4.56) that

$;j = u~(s;,sj) + fi[(-.si, -sj) + ~(5: +s;)
(i= l,...

4SiSj
,n), (~=i+l,...,7l) (4.57)

and

16[ii~(.~i,.sj) + fi~(-.sil –sj
$:j =

)] - [ii’(2Si, 2Sj) + fi’(-zsi, ‘2sj)l + ~(,~ + $4)

48.Si.Sj ‘1

‘ (i= l,.. .,n), (j=i+l,. ... n) (4.58)

Estimates for the quadratic modes are obtained by neglecting the higher order terms in

Eqs. (4.57) and (4.58). Here again, the accuracy of the estimates can be measured by

the agreement between the results from these two equations.

The linear modes are determined by considering again the loading in which qi = .si

and qj = O for j # i. The displacements and rotations calculated from a liT~ear static

finite element analysis are denoted by l.l~i,,(.si) and 8~i,,(si), respectively. The linear mOdeS

are given by

~~ = ‘fi7~(si)/osi (ill,..., ?t) (4.59)

and
~~ = O~a,L(Si)/Si (i=l,...,7L) (4.60)

Equations (4.48-4.49) and (4.57-4.,58) show that the calculation of each quadratic

mode requires four different analyses. Thus, the total number of nonlinear static analyses
required is equal to 2n(n + 1). A total of n linear static analyses are needed to calculate
the linear modes.
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4.4.2 Calculation of Masses and Rotational Inertias

A method is presented in this section for determining the particle masses and rota-

tional inertias given a finite element model of the structure. The method is based upon

the idea of identifying the particles with the nodes of a finite element model. Practical

use of the method is facilitated by a finite element analysis code capable of linear dynamic

analysis.

The linear equations of motion for a displacement-based finite element method are

expressed in matrix notation as

(4.61)

where Mfe and Kje are the mass and stiffness matrices, respectively. The column matrix

u contains all of the translational and rotational nodal degrees of freedom; j contains

the corresponding applied forces and moments.

If the elastic properties of each material in the model are reduced to zero, then all

of the elements of the stiffness matrix become equal to zero. Accordingly, Eq. (4.61)

simplifies to

Mjeii = I (4.62)

Consider now imposing a constant value, a, of acceleration on all of the degrees of freedom

associated with translation in the global l-direction. The reaction forces necessary to

accomplish this motion are contained in ~, which can be determined from a single time

step in a linear dynamic analysis. The mass of the Vth particle is then given by

ml = (fj . bl)/a (Z=l,..., NP) (4.63)

where fj is the reaction force acting on the l’th node.

Use of Eq. (4.63) amounts to lumping the mass of the structure at the nodes. Such

an approximation is reasonable as long as there is a sufficient number of nodes in the

model.

The rotational inertias of the particles are determined in a manner similar to that

for the masses. Consider imposing a constant value, ak, of angular acceleration on all

of the degrees of freedom associated with rotation in the global k-direction. Assuming a

diagonal inertia dyadic, the rotational inertia scalars are given by

]j = (m~k . b~)/a~ (1=1 ,..., Np), (k=l,2,:l) (4.64)

where m~k is the reaction moment acting on the l’th node.

“ 4.4.3 Basis Forces and Torques for Natural Modes

The natural modes of vibration of a structure are often used in assumed mode

approaches as a basis for the description of elastic deformations. A procedure for deter-
mining the basis forces and torques associated with these modes is described below.
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In the context of the finite element method, the frequencies, wi, and the mode shapes,

~il for the natural modes of vibration are obtained by solving the generalized eigenvalue
problem

(~j. – ~~~j.)di = O (4.65)

The static loads, -fi, required to deform the structure into the mode shape ~i are
given by

ja = li,~$i (4.66)

Thus, one possible approach to determine the associated basis forces and torques is to

impose the deformations given by @iin a linear static analysis and calculate the reaction

forces and moments.

Solving Eq. (4.65) for KJ~@i and substituting the result into Eq. (4.66) yields

.fi = ‘j~(~~di) (4.67)

which,’ when compared with Eq. (4.62), motivates the following alternative approach for

determining ~i which does not explicity require the mass matrix:

1.

2.

Reduce the elastic properties of each material in the model to zero.

Impose the accelerations given by ~~+i in one step of a linear dynamic analysis and
calculate the reaction forces and moments.

The latter approach is preferred to the former because of the possible ill-conditioning of

the stiffness matrix.

4.5 Example Problems

Example problems are presented in this section to demonstrate the use of the present

approach. The first example involves a single degree of freedom system and is used

to highlight the importance of quadratic kinematics in rotating structures. A rotating
cantilevered beam is considered in the second example and comparisons made with results

from the literature. The third example deals with the motion of a rotating cantilevered
plate. Here, comparisons are made both with results from the literature and a commercial

finite element analysis code capable of geometric nonlinear dynamic analysis. The final
example examines the motion of an unrestrained, rotating flexible structure.

4.5.1 Example 1

The system” for the first
of length 1 pinned to a rigid
and the hub is restrained by

example is shown in Figure 4.2 and consists of a rigid link
hub of radius r. Relative angular motion between the link
a torsional spring with spring constant k. The mass, m, of
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m

o

pinned comection
with torsional spring

Figure 4.2. Sketch of the system for Example 1.

the link is concentrated at its tip, and unit vectors bl and bz are fixed within the hub.

The rotation rate, w, of the hub is assumed to be a specified function of time.

The primary purpose of this example is to provide a simple illustration of the impor-

tance of quadratic kinematics in rotating systems. This is accomplished by comparing the
linearized equations of motion for the system obtained from two different approaches. In

the first approach, both the linear and the quadratic modes are included in the derivation.

In the second approach, only the linear mode is considered.

Quadratic Kinematics

A logical choice for the basis force associated with the tip mass is (k/l)bl. Thus,

f(q) ‘u) (k/l)qbz (4.68)

The tip deflection (to second order ill q) which results from fixing the hub aud applyiug

the force iu Eq. (4.68) is given by

U((f) “=2) qlb2 + q%}b, (4.69)

where
(/1 = –lp (4.70)

The velocity, v, of the tip mass ill an inertial frallle, IV, is given by

v = ‘$(, +I)b, + U(q)]



(4g9)
(2qg$ - wq~)bl + [91+ w(r + 1+ q’+)]b,

and hence, the kinetic energy, T, is expressed as

(4.71)

(4.72)

The strain energy, U, is given simply by

U = ;kqz (4.73)

Substitution of Eqs. (4.72) and (4.73) into Lagrange’s equation and linearization of
the result yields

where

Upon substitution

ti+[L4J:-cJ2– Zl(l + 7’/J)(?j/l)]q= –L(I + ?’/1) (4.74)

k
u:=— (4.75)

rrll~

of Eq. (4.70) into (4.74) one arrives at

j + [LJ+ Ld2(7y/)]q= –ti(l + 7’/1) (4.76)

Linear Kinematics

Consideration of only linear kinematics amounts to setting o equal to zero in Eq. (4.69),

and thus assuming
u(q) = qlb~ (4.77)

The linearized equation of motion derived under this assumption is obtained by setting

@ equal to zero in Eq. (4.74). The result is

q + [u: – d]q = –L(l + 7’/1) (4.78)

Discussion

It is evident from comparison of Eqs. (4.76) and (4.78) that the two approaches
result in different linearized equations of motion. The geometric. (centrifugal) stiffening

of the system is predicted correctly by Eq. (4.76) when the quadratic kinematics are

il]cluded in the derivation. This is in contrast to Eq. (4.78) which indicates a softening

of the system. The differences between the two equations become significant when the. .
absolute value of the spin rate is of the same order of magnitude as w,,.

This example illustrates that a conventional assumed mode approach based on linear

kinematics may lead to spurious equations of motion unless some corrective measure is
taken. The corrective measure in Refs. [49] and [50] is to include geometric. stiffness
matrices in the analysis. The present approach does not require the use of such matrices;

geometric stiffening is accounted for implicitly by the quadratic modes.
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length = 10

EI= 1.4 X 104

EA = 2.8 X 107

PA= 1.2

03 fixed in rotating frame

Figure 4.3. Sketch of the system for Example 2.

4.5.2 Example 2

This example deals with the motion of a cantilevered beam rotating about an axis

perpendicular to its length. The beam properties are reported in Figure 4.3 and corre-
spond to those for a problem considered previously in the literature. The spin rate, w, of

the cantilevered end of the beam is assumed to be a prescribed function of time given by

{

fl/T[t – (T/27r) sin(27rt/T)] O ~ t ~ T
u(t) =

Q t>T
(4.79)

A finite element model consisting of eight linearly interpolated beam elements was
constructed using the commercially available code, ABAQUS [66]. An eigenvalue anal-
ysis of the cantilevered beam was performed to determine the first two linear modes of
vibration. The basis forces associated with these modes were then used to determine the
quadratic modes. The effects of rotational inertia are small in this problem and therefore
were neglected.

The linearized

where, for n = 2,

M=

equations of motion are expressed in matrix notation as

A4j+ (K +w2K&)q = wj (4.80)

3.0342 –0.0091 1 ‘=[ 1 ‘481)43.206 –0.130

–0.0091 3.2590 –0.130 1776.7
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(4.82)

The equation of motion for a single generalized degree of freedom (n = 1) is obtained by

setting qz=Oin Eq. (4.80)

Tl~etrallsverse tipdeflectioll, u~, isgiven il~termsofql and q.. by

ZQ=(1.000)ql +(o.997)q2 (4.83)

The equations for a conventional assumed mode (CAM) approach based on linear

kinematicsa reidenticaltoEqs. (4.80-4.83) with the exception that

I{wz =

[

–3.0341 0.0091
0.0091 –3.2590 1 (4.84)

Plots of the transverse tip deflection are shown in Figure 4.4 for a spin-up maneuver

defined by Eq. (4.79) with O = 6 and T = 15. Very similar results are obtained with the

present approach for the one mode (71 = 1) and two mode (n = 2) approximations. In

both cases, the results indicate a stable response of the beam. The results based upon

the CAM approach exhibit unstable behavior.

The unstable growth of the CAM solution is explained by observing that at least one
of the eigenvalues of the matrix K+UZKUZ is negative for [wI >3.77 rad/sec. Thus, under
these conditions, the homogeneous solution to Eq. (4.80) contains terms with exponential

growth. In contrast, both eigenvalues of K + U2KW2are always positive for the present

approach since KWZis positive definite.

Simo and VU-QUOC [42] previously studied the motion of this same problem using

beam elements which employ a finite strain theory capable of accounting for large rota-

tions. A plot of the transverse tip deflection obtained using their approach is shown in

Figure 4.5. Notice the excellent agreement with the results shown in Figure 4.4.

A major advantage of the present method is that the computational requirements for

a problem can often be reduced by using a relatively small number of generalized degrees

of freedom. For this example, very good estimates for the transverse tip deflection are
obtained using just a single generalized degree of freedom. The computational advantages

of the present method are made even more apparent in the next example.

4.5.3 Example 3

The third example deals with the motion of a plate rotating about a fixed axis
which is aligned with its cantilevered edge. The dimensions for the plate are shown in
Figure 4.6 and correspond to those used in an earlier study by Banerjee and Dickens

[50]. The density and Poisson’s ratio of the material are taken as those of steel and the
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Figure 4.4. Tipdeflection ofcantilevered beam forspin-up maneuver with O=6at~d
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72 inches

48 inches

Figure 4.6. Sketch of thesystem for Example3.

elastic modulus is chosen to yield a first natural frequency of 0.75 rad/sec.
of a rotating frame attached to the fixed edge of the plate is assumed to
function of time given by Eq. (4.79).

The spin rate

be a specified

An ABAQUS model of the plate was constructed using an 8x 6 mesh of S4R5 shell

elements. The first thre& linear modes of vibration for the plate were calculated using

ABAQUS and are shown in Figure 4.7. Procedures outlined earlier were then used to

determine the quadratic modes and nodal masses. The effects of rotational inertia were

neglected.

A simulation was performed for a spin-up maneuver with C? = 1.25 rad/sec and

T = 30 sec in an attempt to verify the present approach. The maximum transverse

deflection of a corner of the plate was determined to be in excess of 10 inches. A plot
for the same problem taken from Ref. 50 and showII in Figure 4.8 indicates, however, a

maximum deflection of only about 0.3 inch.

Close examination of Figure 4.8 shows that there are very small residual oscillations

during the part of the spin-up maneuver in which h = O. Interestingly, these oscillations

appear to have a frequency much closer to 0.75 Hz than to 0.75 rad/sec. This observation

motivated the conjecture that perhaps the results in Figure 4.8 are for a cantilevered plate

with a first natural frequency of 0.75 Hz rather than 0.75 rad/sec.

To test this conjecture, the original value of the elastic modulus was increased by a
factor of (27r)2. Simulation results for the stiffer plate shown in Figure 4.9 are in excellent
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.
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Figure 4.7. First three mode shapes of cantilevered plate. Both the undeformed and

deformed shapes are shown.



agreement with those in Figure 4.8. Different sign conventions are adopted in the two

figures; both indicate the corner deflection lags the motion of the rotating frame during
the period O < t <30 sec. Notice that the results based upon a CAM approach are also

in reasonable agreement.

Simulations were also performed using the original value of the elastic modulus for
a spin-up maneuver with fl = 0.8 rad/sec and T = 50 sec. This example examines the
situation whe,re the steady value of the spin rate rate exceeds the first natural frequency of

the nonrotating plate. Plots of the transverse corner deflection are shown in Figure 4.10

for both one mode and three mode approximations. The second mode is antisymmetric

(see Fig. 4.7) and therefore is not excited. Results are also shown in the figure for the

CAM approach. As in the cantilevered beam example, the results based upon the CAM
approach exhibit physically unrealistic behavior.

For purposes of comparison, ABAQIJS was used directly to simulate the motion for

the above spin-up maneuver. The same model of the plate used earlier was employed in

a geonietrically nonlinear dynamic analysis using the convergence parameters reported in

Figure 4.11. The corner tip deflection was obtained by projecting the ABAQIJS results

onto a coordinate system fixed in the rotating reference frame. The ABAQUS results are

in excellent agreement with those shown in Figure 4.10.

Two different values of the parameter HAFTOL were used to obtain the results
shown in Figure 4.11. This parameter affects the accuracy of the solution by controlling
the automatic time incrementation scheme used by ABAQUS. Smaller values of this

parameter generally result in more accurate solutions.

The cpu ‘times on a VAX 8550 for HAFTOL=3000 and HAFTOL=300 were 2.7

hours and 8.2 hours, respectively. In contrast, the cpu time required by the present.

approach to numerically integrate the equations of motion was only :3.5 seconds4. The

differences in the computational requirements for ABAQUS and the present approach

are clearly significant.

The above example demonstrates that simulation of large angle motions with a

commercial code may not always be practical. A great deal of computing resources were

required to obtain the results in Figure 4.11 even though the total rotation of the, plate
was only about three quarters of one revolution.

4.5.4 Example 4

The final example examines the motion of the plate used in Example :3when all four
edges are free. In contrast to the previous three examples, the motion here is completely

unrestrained. In addition, the analysis employs a Buckens reference frame as opposed

qThe total CPUtirn~ to form the equations of motion for 11= :]Was around ~ min~lt~s.
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Figure 4.8.
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to a locally attached frame. The first three flexible modes of vibration calculated using
ABAQUS are shown in Figure 4.12.

The orientation of the Buckens frame is chosen such that bl (see Fig. 2.1) is per-

pendicular to the plane of the undeformed plate. The initial angle between the angular

moment um vector and bl is 5 degrees for the motion under considerate ion. Moreover, the

plate is initially deformed into the shape of its first flexible mode.

Plots of ‘corner deflection relative to the Buckens frame are shown in Figures 4.13

and 4.14 for nominal spin rates of 1 rad/sec and 4 rad/sec (see Eq. (2.29)). The results

shown in the two figures were obtained from numerical integration of Eqs. (2.35-2.39).

The first mode remains uncoupled from the others even for nonzero values of the spin

rate. As such, the response shown in the two figures is entirely from the first mode.

Comparing the two sets of results in Figure 4.13 shows that the (;AM approach pre-

dicts a plate vibration frequency lower than that of the present approach. The differences

are even more pronounced in Figure 4.14 when the spin rate is increased by a factor of

four. It is clear from comparison of the two figures that the present approach predicts

the expected increase in the frequency of vibration with increased spin rate. Quite the

opposite is observed for the results based on the CAM approach which fails to account

for the stiffening effect.

4.6 Summary

A new method for modeling rotating flexible structures is developed and investigated

in this chapter. The method is similar to conventional assumed mode approaches with the

addition that quadratic. terms are ret ained in t be kinematics of deformation. Retention

of these terms is shown to account for the geometric. stiffening effects which occur in

rotating structures.

Reciprocal relations are established between the deformation modes by using an
argument based upon conservation of energy. Expressions are also developed for the
strain energy and kinetic energy of a structure in terms of a set of generalized degrees
of freedom. These expressions can be used together with results from Chapter 2 to form

the equations of motion.

Computational techniques are developed for the practical implementation of the
method. The techniques make use of finite element analysis results, and thus are appli-
cable to a wide variety of structures. It is shown that all of the terms appearing in the

equations of motion can be determined by utilizing a finite element analysis code capable
of nonlinear static. and linear dynamic analysis,

Motion studies of specific problems are provided to demonstrate the validity of the
new method. Excellent agreement is found both with results from the literature and ones
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obtained from a commercial finite element analysis code capable of geometric nonlinear

dynamic analysis. The computational advantages of the new method are demonstrated.
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5. Conclusions

5.1 Summary of Results

5.1.1 Equations of Motion

Equations of motion are developed in Chapter 2 for rotating flexible structures that
are undamped and free of applied forces and moments. Central to the development

is the use of a floating reference frame which follows the overall rigid body motion of

the structure. Within this frame, elastic deformations are expressed as functions of n
generalized degrees of freedom. A nonlinear transformation of variables is devised which

permits the expression of the equations of motion as a Hamiltonian system with n + 1

degrees of freedom. This result is shown later to provide the basis for the analysis of

spin stability. Application of the transformation is illustrated for a problem involving

the torque-free motion of a rigid body.

5.1.2 Stability Analysis

The nonlinear stability of undamped flexible structures free of applied forces and

moments is investigated in Chapter 3 for spin about the minor axis. The equivalence
established between the equations of motion and a Hamiltonian system is used as an
avenue for the study of spin stability. It is shown that a motion which is spin stable

in the linear ‘approximation may be. unstable when nonlinear terms are included. For

linearly stable systems, the existence of at least one low-order resonance relation among

the characteristic frequencies is typically required for instability. Stability criteria are

developed in detail for systems satisfying a single resonance relation of order four or less.

(;eneral guidelines are also provided for determining the stability of systems possessing

multiple resonance relations. These criteria are applied to the stability analysis of an

example problem and confirmed by numerical integration of the equations of motion.

5.1.3 Modeling

A new method for modeling rotating flexible structures is developed and investigated
in Chapter 4. The method is similar to conventional assumed mode approaches with the

addition that quadratic terms are retained in the kinematics of deformation. Retention
of these terms is shown to account for the geometric stiffening effects which occur in

rotating structures.

Reciprocal relations are established between the deformation modes using an argu-
ment based upon conservation of energy. Expressions are also developed for the strain
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energy and kinetic energy of a structure in terms of a set of generalized degrees of free-

dom. These expressions can be used together with results from Chapter 2 to form the

equations of motion for a structure,

Computational techniques are developed for the practical implementation of the
method. The techniques make use of finite element analysis results, and thus are ap-

plicable to a wide variety of structures. It is shown that all of the terms appearing in
the equations of motion can be determined using a finite element analysis code capable

of nonlinear static and linear dynamic analysis. Motion studies of specific problems are

provided to demonstrate the validity of the new method. Excellent agreement is found

both with results from the literature and ones obtained from a commercial finite element

analysis code. The computational advantages of the new method are demonstrated.

5.2 Contributions

A significant contribution is made to the current understanding of the stability of

rotating flexible structures. In particular, a method of stability analysis is developed for

undamped structures spinning about the axis of minimum moment of inertia. Previous

work in the literature has dealt almost exclusively with the stability analysis of spin

about the axis of maximum moment of inertia.

A contribution is made towards a practical means for the motion simulation of rotat-
ing flexible structures. A new method of modeling is presented which can be implemented
efficiently and is applicable to a wide variety of different structures. The method pro-
vides a practical alternative to the use of commercial codes which may require excessive

amounts of c.amputer time.

A new transformation of variables is developed which allows the governing equations

of motion for rotating flexible structures to be expressed as a Hamiltonian system. Al-

though primarily of theoretical interest, the transfomation does have application to the

stability analysis of rotating systems.
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Appendix A
Example System

Tl~esystell~ used il~tl)e exaInpl~of (jl~apter:l issllowl~iI~ Figure A.l anddescrilx?.d
below. A particle of mass m is connected to a carrier body, /3, of mass M by a spring.

lJnit vectors bl, bz, b~ fixed in B are parallel to the central principal axes of 1?. The
position of the particle relative to the mass center of B is given by

p = (h – lxz)bl (Al)

where X2 is a generalized coordinate which is zero when the spring is unstretched. The

constant 1 in Eq. (A. 1) is a given characteristic length, e.g., the dimension h if h # O.

Figure A. 1. Sketch of the system used in tl~e examples of (:hapter 3.
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The central principal moments of inertia of B are denoted by II, IZ and 13. The angular

velocity of B in an inertial frame is expressed as

@ = wlbl + ~zb2 + w3b3 (A.2)

Thetension inthespring connecting the particle to Bis givenby I

f = k(~z,) + k3(lx,)3 (A.:])

It can be shown that the kinetic energy, T, and strain energy, U, of the system are
given by

2’ = : { IIu; + [12+ ti/2(/3 – X2)2]U: + [13+ rh12(13– Z2)2]U: + Th12i: } (A.4)

where

m
o!

= M+m
/3 = h/1

m = 772(1–0)

Applying the procedure given in 2.2, one obtains

and

(A.5)

(A.6)

(A.7)

(A.8)

(A.9)

where

iz = 12+Th12/32 (All)

T~ = Is+ 7?112/)2 (A.12)

a5 = k314/4 (A.13)

f(x,) = –2/jx, + x; (A.14)

As an aside, it is noted that the Hamiltonian given by Eq. (A. 10) is integrable if 12 = 73
since H = H(x: + Y:, x27 Y2).
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